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Abstract We propose a feature-fusion network for pose estimation directly from RGB images without any depth infor-

mation in this study. First, we introduce a two-stream architecture that consists of segmentation stream and regression

stream. The segmentation stream is used to process the spatial embedding feature and obtain the corresponding image

crop. These features are further coupled with image crop in the fusion network. We use an efficient Perspective-n-Point (E-

PnP) algorithm in the regression stream to extract robust spatial features between 3D and 2D keypoints. Finally, we also

perform iterative refinement with end-to-end mechanism, which can further improve the estimation performance . We con-

duct experiments on two public datasets of YCB-Video and the challenging Occluded-LineMOD. Our method outperforms

state-of-the-art approaches in both speed and accuracy.

Keywords two-stream network, 6D pose estimation, fusion feature

1 Introduction

The 6D object pose estimation has been widely

used in computer vision tasks in daily life, such as

robot grasping and manipulation, autonomous naviga-

tion and augmented/mixed reality, with the continu-

ous development of sensor technology. High require-

ments are put forward for the following applications

for various real-world needs: (1) proper handling of

objects with irregular shapes , low-resolution textures,

and different materials; (2) robustness to heavy occlu-

sion, lighting changes in various environments, and po-

tential technical noise; (3) real-time speed as possible.

Many RGB-D algorithms based on depth informa-

tion can infer the pose relatively accurately when tex-

ture features of the object is blurred or the scene

is blocked by other objects. The traditional method

extracts features from RGB-D data, combines them

with depth masks, and performs verification and infer-

ence [1, 2, 3, 4, 5, 6, 7, 8]. However, reliance on manual

functions and fixed matching procedures limits the em-

pirical performance in the case of severe occlusion and

lighting changes. RGB-D-based algorithms are gener-

ally restricted applications that require the hardware

of the RGB-D sensor. Hence, the majority of the exist-

ing RGB-D-based methods present difficulty in meeting
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requirements of accurate pose estimation and fast infer-

ence [9].

(a) (b)

(c) (d)

Fig.1. Example of pose estimation using our approach. (a) Input
image with occluded known objects. (b) Results of object de-
tection and segmentation. (c) Locations of keypoints. (d) Final
results of the pose estimation.

We focus on methods of image-based 2D recognition

of object poses due to increasing demands of source ac-

quisition and the limitation of depth sensors. Tradi-

tional RGB-based methods rely on the correspondence

between 3D and 2D keypoints. First, find unified fea-

ture points through the known 3D model and 2D pixels

of the object and then calculate regression parameters

of rotation and translation for further processing using

perspective-n-point (PnP) algorithm. This approach is

robust when the object has fruitful textures. However,

it might fail if the texture becomes blurred or multiple

objects block one other [12, 13, 17, 33]. Recent ap-

proaches have attempted to overcome these difficulties

that usually apply deep neutral networks to return 6D

poses from images directly or detect keypoints related

to objects. However, both situations endow the object

with the property of the global entity, which makes the

procedure susceptible to heavier occlusion.

In this paper, we propose a novel method for gen-

erating high-quality real-time pose estimation of RGB

images to address this occluded problem. The key idea

is to build a two-stream architecture, which includes

a segmentation stream to process various features of

the input image and a regression stream to solve the

2D-3D correspondences via bounding corners. Differ-

ent from existing methods that use image segmenta-

tion [10] and bounding boxes [11] to calculate global

features separately, we further propose a fusion net-

work for transforming and mapping RGB textures and

location relationship at the per-pixel level. Abundant

features ensure that our model considers both texture

and geometric information of the object. Moreover, we

design an iterative refinement process with end-to-end

mechanism; that remarkably improves the accuracy of

estimated poses. An example of pose estimation using

our approach is shown in Fig. 1.

We conduct various comparisons to demonstrate

the superiority of our approach over many represen-

tative competitors in terms of pose estimation perfor-

mance and efficiency. Our method present superior per-

formance on popular YCB-Video [12] and Occluded-

LineMOD [13] datasets. Notably, our method still

produces reliable estimation results when dealing with

challenging samples in heavily cluttered scenes. Finally,

we illustrate benefits of the iterative refinement process

through an ablation study. This paper extends our re-

cent ACM SIGGRAPH publication [14], and shows the

following additional contributions:

• Additional qualitative and quantitative experi-

ments to prove the superiority of our pose esti-

mation method;

• Improved loss function and other elaborate de-

scriptions with further advanced performance;
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• Extended application: advertising replacement

and wall decoration suggestion.

2 Related Work

We briefly discuss two relevant types of work based

on the input, that is, RGB images with or without

depth.

2.1 Pose estimation based on RGB-D images

Recent methods are typically data-driven. Song et

al [15, 16] enhanced 3D object detection through dis-

cretization of 3D voxel spaces. The researchers pro-

posed 3D BBox for the voxelized 3D model input and

estimated poses. Although geometric information is

encoded effectively, these time-consuming and space-

expensive methods based on the voxel representation

take nearly 20 seconds and 300M+ memory for a single

model frame in [16].

Other methods directly use 3D deep learning archi-

tectures from 3D point cloud data and perform 6-DoF

detection pose estimation. On the basis of the pio-

neering work of PointNet [17], both Frustrum [11] and

VoxelNet [10] have demonstrated considerable progress

in point cloud detection and surpassed a large number

of competitors on the KITTI benchmark [18].

Visual-recognition deep neutral networks also per-

form pose estimation on the basis of RGB-D input.

These methods require detailed steps of feature extrac-

tion and training to optimize 3D prior labels. For in-

stance, PoseCNN [12] applies closest point (ICP) pro-

cess iteratively, and DenseFusion [9] uses RGB-D data

color and depth information of pixels.

The acquisition and widespread use of these meth-

ods are obstacles to real-world applications bacause

they require many sources with depth information. By

comparison, our method relies only on RGB images to

achieve high-quality pose recognition and real-time per-

formance.

2.2 Pose estimation based on RGB images

Existing methods based on RGB images are mainly

divided into two categories. Traditional methods de-

pend on keypoint detection and matching relationship

with known object models [19, 20, 21, 22, 23, 24].

Other methods, which use learn mechanism to predict

2D keypoints, are presented to solve poses via the PnP

algorithm [28] and address this challenge [1, 25, 26, 27].

Although excellent and efficient in some tasks that re-

quire speed performance, the robustness and accuracy

of these methods reduce when faced with low-texture

or low-resolution input images. Additional studies have

focused on directly using CNN-based architectures for

pose estimation due to deep learning [29, 30]. These

studies mainly obtain different forms of orientation es-

timation based on RGB images. Xiang et al [12]

learned and clustered 3D features of the object model;

and then extracted the orientation information via a

viewpoint-aware strategy. Mousavian et al [31] at-

tempted to obtain geometric constraints and exploit 3D

object parameters to restore poses While concentrating

on a single-view. These methods present poor accuracy

under low-texture or low-resolution input despite their

important advantages in speed performance. Therefore,

other technologies focus on the use of powerful deep

learning based on CNN architectures to obtain target

pose estimation directly from a single image [29, 30],

and constantly concentrate on the prediction of orien-

tation information. Xiang et al [12] attempted to learn

3D features, cluster object models, and obtain percep-

tual predictions on the basis of viewpoints. Mousavian

et al [31] optimized the single view to extract poten-

tial geometric constraints, recover 3D parameters, and

achieve pose estimation. Sundermeyer et al [32] pro-

posed a novel encoding method to convert orientation
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information into feature vectors implicitly; and then

determine the optimal match for the test object frame.

Many methods focus on local information to solve

the problem of occlusion and improve accuracy perfor-

mance. Seg-Driven [33] crops the input image in differ-

ent sizes, and the final result is weighed by combining

multiple local pose estimations. SilhoNet [34] contin-

uously obtains the direction information using contour

scanning mechanism. Pix2Pose [35] recovers the cor-

respondence between 3D and 2D from the pixel level

through GAN generation technology. Although these

studies have achieved excellent experimental design and

acceleration network, they still exhibit poor accuracy.

ACC [36] attempted to address this problem by recon-

structing the mesh of the entire original model on the

basis of the optimized DCNN model [37, 38]. However,

this method can only be applied to a single target and

demonstrates poor generalization in challenging situa-

tions.

Our method is inspired by DenseFusion [9], in which

proposed a heterogeneous architecture and jointly con-

sidered of potential features of geometry and texture.

However, the fusion method in our approach is used

for spatial coordinates and object appearance textures

without depth information. We show that our novel fea-

ture extraction and mapping scheme outperforms only

PnP or image cropping-based algorithms in this study.

Furthermore, we introduce a general end-to-end refine-

ment strategy to enhance our performance.

3 Methodology

In this paper, we address challenges with high oc-

clusion or under barren light with a heterogeneous net-

work (Sec. 3.2) that processes texture and location in-

formation differently on the basis of DenseFusion [9].

We also design a new and completely independent cou-

pling method (Sec. 3.3). Moreover, we build a two-

stream network based on image cropping and bounding

box through an encoding decoding process; that shares

some similarities with Seg-Driven [33] in segmentation

processing (Sec. 3.4). Finally, the estimator of poses

will be further optimized with a differentiable module

(Sec. 3.5). Compared the previous expensive optimiza-

tion procedures [39, 12], our module accounts for only

a fraction of the total reasoning time.

3.1 Architecture

Fig. 2 depicts the overall workflow of our method.

The segmentation stream consists of the following steps:

Conduct semantic segmentation and crop in each input

frame. The existing technology can achieve excellent

performance for known objects. We then feed segmen-

tation labels for each segmented local RGB patch with

the bounding box of each cropped image and the entire

original image with different sizes to the fusion network,

which couples spatial features after segmentation with

texture features of the image itself.

pose estimation current input model 

spatial embeddings

texture embeddings

fusion embeddings

image crop
next     iteration

Main Network

Fig. 3. Refinement procedure with the end-to-end mechanism.
This additional iterative optimization directly follows the main
network.

The regression stream performs an efficient PnP

(EPnP) solution on spatial channels (XYZ) of the ob-

tained fusion feature, and returned 2D-3D correspon-

dences (rotation R and translation t) and texture chan-

nels (RGB) jointly participate in confidence calculation.

We can treat these correspondences as rough pose es-

timates according to the magnitude of the confidence

and design a subsequent refinement iteration for per-

formance improvement, as illustrated in Fig. 3. Details
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image crop

Texture feature

Spatial feature

Fusion feature

Regression stream

Segmentation  stream

Keypoint location

Object detection
and segmentation Fusion network

RANSAC-based EPnP

6D pose estimation

Fig.2. Proposed network architecture. A two-stream architecture network is designed for feature processing, including segmentation
and regression. A fusion network can combine texture and spatial features also exists.

are described in the following section.

3.2 Segmentation Stream

We use classic backbone, which consists of two

streams of segmentation and regression. We use

the highly effective and efficient YOLOv3 [40] and

YOLOv4 [41] for initial object detection and obtain

many areas in the segmentation. We then crop each

detected area on the original input image in the segmen-

tation stream. Overlapping may occur in divided parts

due to the occlusion between objects. Furthermore, we

label every unit of the n × n grid with object or back-

ground information. Specifically, we can generate ac-

curate semantic labels using the real 3D model and the

corresponding depth information originally contained

in datasets when training the model to greatly reduce

the impact of occlusion on the image. The uneven dis-

tribution of positive and negative samples in practice is

due to the significantly smaller area occupied by the in-

vestigated object than the background. Therefore, we

utilize Focal Loss [42] to address negative effects of sam-

ple distribution on model training. Moreover, we apply

a pixel-wise median frequency balancing technique [38]

because target objects demonstrate different sizes and

changing the ratio of cropped images will affect the per-

formance of the pose estimation task.

3.3 Fusion Network

We will fuse individual multi-dimensional informa-

tion for different detected objects with various sizes.

The existing method DenseFusion [9] also considers the

fusion of features, and links the dense depth and color

features on cropped images through a multilayer per-

ceptron (MLP) to form a new global feature. However,

this method retains unnecessary errors generated by the

feature extraction in the previous step, such as pixel

information of other objects caused by occlusion and

overlapping or background information due to segmen-

tation accuracy. Therefore, undesigned fusion features

will reduce the performance of pose estimation. A novel

pixel-wise [9] strategy is used in our implementation

to achieve an efficient fusion network, especially under

heavy occlusion and imperfect segmentation situations.

The proposed fusion network based on PointNet [17]

supplements texture features that correspond to spatial

features on the processing object. Our fusion network

performs local fusion and prediction on each n×n grid.

Hence, we design different prediction weights according

to visible and invisible parts of targets to minimize and

decrease the negative influence of heavy occlusion and
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Fig.4. Architecture of the fusion network. This detailed flowchart explains the process of extracting spatial and texture information on
the basis of heterogeneous CNN, and then feeds them into another one to obtain fusion features. m+1 refers to the m + 1-channelled
semantic segmentation map in Sec.3.2 and 128 includes XYZ and RGB.

imperfect segmented noises.

We use the projection transformation to couple the

spatial features and texture features on each grid, based

on the real 3D model, ground-truth pose labels, and uv

texture contained in original datasets combined with

known internal camera parameters. We then expect to

generate dense feature vectors with uniform size after

passing the fusion network. Fig. 4 shows the architec-

ture of the fusion network in detail. Two features re-

sults with different dimensions are produced when the

cropped image, which is resized to 128 × 128, passes

through a heterogeneous neural network. The upper

network will obtain m + 1-channelled spatial informa-

tion based on background and occlusion whereas the

lower network will obtain texture information based on

texture and appearance, and then couple them to ob-

tain 128 × 6 fusion features, including XYZ and RGB

intrinsic properties.

3.4 Regression Stream

Regression stream plays an important role in us-

ing the efficient PnP algorithm to obtain spatial fea-

tures from the feature vector and link the position in-

formation of 2D and 3D key points. Following Seg-

Driven [33], we set key points to eight vertices of bboxes

of each target. We focus on anchor point of the center in

the bounding cube and calculate offset vector and tex-

ture information deviation of center and corner points

for every vertex:

(a) (b)

Fig.5. Simple example of our seg-reg two-stream network. (a)
Segmentation stream labels every grid of the cropped image. (b)
Offset vector and texture deviation of the center and corner points
in the regression stream.

C denotes as the 2D coordinate of each anchor cen-

ter point. An offset estimation fi(C) is proposed for

the ith vertex. Hence, we can express the vertex as

C + fi(C) with the precise 2D coordinate CGT
i from

the original dataset. The texture of anchor point T , a

corresponding offset fi(T ) and precise texture TGT
i are

expressed as follows:

∆i(C) = C+fi(C)−CGT
i , ∆i(T ) = T+fi(T )−TGT

i .

(1)
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The novel loss function is expressed as follows:

Epos =
∑
Grid

n∑
i=1

‖∆i(C)‖1 + ‖∆i(T )‖1 . (2)

Here, we use the L1 loss function instead of the L2 one,

because the former is less sensitive with ill-posed sam-

ples than the latter. We set equal weights because both

spatial (x, y, z) and texture (r, g, b) features present the

same dimensions.

（a） （b）

（c） （d）

Fig.6. Process of regression stream. (a) Detected Coke can us-
ing the segmentation stream. (b) EPnP algorithm will generate
many series of pose estimations, shown as pink dots. (c) We se-
lect the n = 10 group with the maximum confidence for RANSAC
repetition. (d) Contour result after iterative optimization.

A sigmoid-based function is used as the activation

function to produce the confidence Coni for any group

of EPnP algorithm results.

Li =
1

8

∑
n

‖
(
RGT pn + tGT

)
− (Ripn + ti) ‖, (3)

where pn denotes the selected n-th 3D point of corners

from the real 3D model. However, we want to decide

which pose estimation may be the optimal hypothesis

because the PnP algorithm may lead to multiple sets of

approximate solutions. Thus, we need to use RANSAC

to balance the confidence among each prediction. The

loss function to minimize becomes:

L =
1

N

∑
i

(LiConi − w log (ci)) , (4)

where Coni represents the score of approximation

between our pose estimation and the true three-

dimensional transformation. We then design a new loss

penalty term as follows:

Epro =
∑
Grid

n∑
i=1

‖−exp(−Θ ‖δi(C) + δi(T )‖2) + Coni‖1 ,

(5)

where Θ is a trade-off parameter. Finally, the regres-

sion loss becomes:

E = ωposEpos + ωproEpro, (6)

where ωpos and ωpro weight the effects of these two

losses.

The large number of result candidates generated by

iterative algorithm for every target will consume unnec-

essary computing resources. Hence, we use the EPnP

algorithm with RANSAC mechanism (n = 10) [43]

to obtain the 6D pose with consideration for efficiency.

Fig. 6 illustrates the 2D-3D corresponding procedure

between the image and the 3D model.

3.5 Iterative refinement

We propose an iterative optimal procedure with net-

work architecture that evidently advances the pose es-

timation performance in a robust and effective manner.

Optimization adjustment aims to reduce the noise

caused by calculation and trade-off as extensively as

possible through the iterative form and improve the

performance of pose estimation. New predictions from

the beginning are unnecessary because we obtained a

satisfactory result. However, we add a module behind

the main network to polish the previous results. There-

fore, we use the result of the main network as the initial

value, perform refinement iterations, and then utilize
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the iteration result as the new input and repeat this

step. The important operation of iterative optimization

aims to combine the 3D model from the original dataset

with the obtained pose estimation, which presents the

maximum confidence, and conducts a projection trans-

formation to output the corresponding image. The im-

age continues to iterate in the main network due to the

segmentation stream to improve the accuracy of perfor-

mance.

This module is illustrated in Fig. 3. We obtain the

pose estimation after K (K = 2 in our experiment)

iterations as follows:

Pos = MRK ,tK ·MRK−1,tK−1
· · ·MR1,t1 ·MR0,t0 , (7)

where MRK ,tK represents the K − th Euclidean trans-

formation, including rotation and translation. Fig. 9

intuitively shows the effect with and without iterative

optimization (K = 1).

4 Experiment Results

We introduce the evaluation on the two popular

datasets of Occluded-LINEMOD [13] and YCB-Video

[12] that outperforms those of other methods. The YCB

dataset consists of various models with distinguishable

textures under different surroundings while presenting

many rich labels. Hence, this information is a com-

monly used 6oF datasets in many existing methods.

The Occluded-LINEMOD dataset is widely used in

challenging situations with serious occlusion and messy

background information. The performance of existing

SOTA on this dataset is unsatisfactory.

We compare our proposed approach with the follow-

ing recent advanced methods: PoseCNN [12], BB8 [46],

Tekin [26], Heatmaps [47], Pix2Pose [35], SilhoNet [34]

, Seg-Driven [33] , PVnet [48] and CDPN [52]. The

commonly used metrci ADD-S [12] proposed by the au-

thor of the YCB-Video dataset was used in this study.

We set ADD-0.1d in our expriments to adjust whether

a pose estimation will be positive under the condition

that the metric should be below 10% of the model di-

ameter.

4.1 Ablation Study on Different Architectures

We investigate the effectiveness of different architec-

tures in this section. The architecture we proposed can

differ in the following aspects: 1) fusion feature, and

2) iterative refinement. We compare different features

in the first part and omit the second item ∆i(c) re-

lated to texture information in Eq. (2) (Sec. 3.4). The

module that only use spatial features is similar to the

Seg-Driven [33] method. Both approaches rely only on

segmenting images and use a regression algorithm (e.g.

EPnP) to calculate the 2D-3D correspondence. The ex-

perimental results of different modules are reported in

Table 1. The fusion feature (third row) strongly pro-

motes the improvement of performance based on only

spatial features (first row). The symmetric Eggbox

model with unclear texture may cause a slight drop in

performance, but the average result of the fusion fea-

ture presents an increasing of more than 5% compared

with the use of spatial feature alone. The iterative re-

finement part clearly showed that the results with iter-

ative refinement (even rows) are constantly better than

those without (odd rows). The ablation study proves

the superiority of fusion feature and iterative refinement

modules.

4.2 Quantitative Evaluation on Occluded-

LINEMOD

We produce deep-fake images on random PASCAL

VOC [51] images to find suitable training and test-

ing objects. Fig. 7 illustrates some sampled results of

our algorithm. Table 2 presents the quantitative eval-

uations on Occluded-LINEMOD. Our method demon-
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Fig.7. Results on the Occluded-LINEMOD dataset. The entire scene is largely obscured and prensents challenging camera viewpoints.

Table 1. Ablation study on Occluded-LINEMOD. The metric is ADD-0.1d. Symmetric objects have bold-name. SF: spatial feature,
TF:texture feature, IR:iterative refinement.

Methods SF TF IR Ape Can Cat Driller Duck Eggbox Glue Holepun Average

XYZ only X 14.9 60.1 16.5 48.2 25.1 35.6 44.4 35.9 35.1
XYZ+Refine X X 17.5 63.1 16.6 48.3 25.4 35.8 44.6 38.6 36.2
Fusion X X 37.4 68.6 26.0 48.5 25.0 30.3 45.2 45.1 40.8
Fusion+Refine X X X 39.1 69.8 26.9 49.0 25.6 31.9 46.5 53.1 42.7

strates superior performance with global inference tech-

nologies, such as PoseCNN, Tekin, BB8, and Pix2Pose.

Compared with other methods, the proposed method

also slightly outperforms Seg-Driven, Heatmaps, and

PVnet, which use deep information in the data-build

stage. Furthermore, we compare the time efficiency

in Table 3. Our method is approximately five times

faster than other methods due to its succinct network

architecture and EPnP-RANSAC mechanism. More-

over, our approach only needs less than 30 ms for each

image. Notably, our proposed approach shows high ac-

curacy and efficiency even with large occlusions.

Table 2. Quantitative evaluation on the Occluded-LINEMOD
dataset. Symmetric objects are presented in bold font. Red and
blue labels denote the best and second best results, respectively.

Object PoseCNN Tekin BB8 Pix2Pose Heatmap Seg-Driven PVnet CDPN Ours

Ape 9.6 7.0 28.5 8.3 16.5 12.1 15.81 28.92 39.1
Can 45.2 1.2 11.2 12.1 42.5 39.9 63.31 55.98 69.8
Cat 0.9 3.6 9.6 9.3 2.8 8.2 16.68 13.24 26.9
Driller 41.4 1.4 0.2 10.9 47.1 45.2 65.65 51.37 49.0
Duck 19.6 5.1 6.8 6.3 11.0 17.2 25.24 22.97 25.6
Eggbox 22.0 9.6 4.0 13.8 24.7 22.1 50.17 35.98 31.9
Glue 38.5 6.5 4.7 11.3 39.5 35.8 49.62 39.68 46.5
Holepun 22.1 8.3 8.1 10.7 21.9 36 39.67 51.06 53.1

Average 24.9 5.3 9.1 10.3 25.8 27.0 40.77 37.4 42.7

Table 3. Efficiency comparison on the Occluded-LINEMOD
dataset. All are conducted in the same environment.

Method PoseCNN Tekin BB8 Pix2Pose Heatmap Seg-Driven PVnet Ours

FPS 4 40 3 - 4 22 8 30
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Fig.8. YCB-Video results. Every two rows is a pair of images, rep-
resenting different perspectives of the same scene. Our method
generates accurate pose estimations, even in the presence of large
occlusions. Furthermore, it can process multiple objects in real
time.

4.3 quantitative Evaluation on YCB-Video

Fig. 8 presents additional test results in a large num-

ber of scenarios. Our method exhibits satisfactory es-

timation results in all tests. We compare our method

with the baseline PoseCNN and three latest approaches

in Table 4. Our method outperforms both PoseCNN

and SilhoNet. Furthermore, our method is only slightly

better than Heatmap and Seg-Driven because symmet-

rical objects have similar appearance and are texture-

less.

Fig.9. Comparison of before (top) and after(bottom) the iter-
ative refinement module. Benefits of our end-to-end procedure,
particularly in the presence of large occlusions, are presented.

Table 4. Quantitative evaluation on the YCB-Video dataset.
The metric is ADD-0.1d. Symmetric objects are presented in
bold font. Red and blue labels denote the best and second best
results, respectively.

Object PoseCNN SilhoNet Heatmap Seg-Driven CDPN Ours

master chef can 3.6 23.8 32.9 33.0 35.5 37.1
cracker box 25.1 20.1 62.6 44.6 45.6 45.8
sugar box 40.3 48.5 44.5 75.6 71.5 69.4
tomato soup can 25.5 25.1 31.1 40.8 49.6 52.3
mustard bottle 61.9 60.8 42.0 70.6 74.8 78.2
tuna fish can 11.4 25.3 6.8 18.1 25.2 24.1
pudding box 14.5 17.0 58.4 12.2 48.4 32.6
gelatin box 12.1 26.2 42.5 59.4 57.8 46.9
potted meat can 18.9 22.2 37.7 33.3 37.6 40.1
banana 30.3 32.8 16.8 16.6 25.1 27.5
pitcher base 15.6 25.9 57.2 90.0 80.8 82.0
bleach cleanser 21.2 20.8 65.3 70.9 81.9 82.1
bowl 12.1 22.5 25.6 30.5 22.6 23.0
mug 5.2 12.3 11.6 40.7 51.2 55.6
power drill 29.9 26.0 46.1 63.5 57.4 59.8
wood block 10.7 18.7 34.3 27.7 25.1 27.5
scissors 2.2 3.4 0.1 17.1 11.6 12.4
large marker 3.4 3.0 3.2 4.8 4.5 6.1
large clamp 28.5 29.7 10.8 25.6 25.9 27.7
extra large clamp 19.6 20.4 29.6 8.8 13.4 16.4
foam brick 54.5 42.0 51.7 34.7 40.7 44.8

Average 21.3 25.1 33.6 39.0 42.2 42.4

4.4 Ablation study of iterative refinement

Fig. 9 illustrates some sampled predictions and com-

parisons. The results showed that our refinement mod-

ule can improve the performance of the original main

network.
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(a) advertising space (b) officical logo implant (c) our algorithm

(d) advertising space (e) recommended decoration (f) our algorithm

Fig.10. Examples of object placement. The top row is found
in virtual media whereas the bottom row is located in the real
environment.

4.5 Applications

6D object pose estimation is a key technology for

real-world applications, as mentioned in Sec. 1. We ap-

ply our method in object placement. We skin known

textures at a specified location and pretend that the ob-

ject is in the dataset because our method targets known

objects. We translate and rotate the target object ac-

cording to the pose, and then place it in the specified

position after estimating the pose by our algorithm. As

shown in the first row of Fig. 10. The image on the left

is the advertising space of the most popular e-sports

game in the world, and all viewers will see it during the

game. The middle image shows that the official game

logo is placed on the advertising space. The image on

the right uses our algorithm with the texture of the

cracker box in the YCB dataset. Notably, many rec-

ommended decoration algorithms can also be viewed

as an implementation of object placement. Liang et

al [53] determined the optimal decoration recommen-

dation on the wall. Meanwhile, we also applied our

proposed method to achieve the same performance in

the real environment.

5 Conclusions

We proposed a novel method for 6-DoF real-time

pose estimation of targets only from images without

depth information to build a two-stream architecture

that includes a segmentation stream for processing var-

ious features of the input image and a regression stream

for solving 2D-3D correspondences via bounding cor-

ners. We also proposed a fusion network to transform

and map textures and location relationships at the pixel

level. Abundant features ensure that our model consid-

ers both the appearance and geometric information of

the object. Moreover, we design an iterative procedure

to improve the accuracy of results.

Fig. 11. Unsatisfactory examples (highlighted in the green
box). Left: heavily occluded symmetrical Eggbox model in the
Occluded-LINEMOD dataset. Right: texture-less symmetrical
Bowl model in the YCB-Video dataset.

However, our method may produce unsatisfactory

results on objects with symmetry or texture-less mod-

els. Fig. 11 shows two examples of this scenario. If an

excessive number of occlusions exists in the scene, our

method fails to obtain sufficient information to estimate

accurate poses. This issue will be our main concern in

a future investigation.
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