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LARNeXt: End-to-End Lie Algebra Residual
Network for Face Recognition

Xiaolong Yang ", Xiaohong Jia
Zhifeng Li

Abstract— Face recognition has always been courted in com-
puter vision and is especially amenable to situations with significant
variations between frontal and profile faces. Traditional techniques
make great strides either by synthesizing frontal faces from sizable
datasets or by empirical pose invariant learning. In this paper,
we propose a completely integrated embedded end-to-end Lie
algebra residual architecture (LARNeXt) to achieve pose robust
face recognition. First, we explore how the face rotation in the 3D
space affects the deep feature generation process of convolutional
neural networks (CNNs), and prove that face rotation in the image
space is equivalent to an additive residual component in the feature
space of CNNs, which is determined solely by the rotation. Second,
on the basis of this theoretical finding, we further design three
critical subnets to leverage a soft regression subnet with novel
multi-fusion attention feature aggregation for efficient pose esti-
mation, a residual subnet for decoding rotation information from
input face images, and a gating subnet to learn rotation magnitude
for controlling the strength of the residual component that con-
tributes to the feature learning process. Finally, we conduct a large
number of ablation experiments, and our quantitative and visual-
ization results both corroborate the credibility of our theory and
corresponding network designs. Our comprehensive experimental
evaluations on frontal-profile face datasets, general unconstrained
face recognition datasets, and industrial-grade tasks demonstrate
that our method consistently outperforms the state-of-the-art ones.

Index Terms—Face recognition, lie algebra, pose estimation,
profile face.
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1. INTRODUCTION

ECENT face recognition technologies have benefited from
R various datasets and have been extensively developed by
further polishing deep learning models [1], [2], [3]. Although
many existing technologies are strong and robust to face recog-
nition in unconstrained environments, there remain quite a lot
of challenges for recognizing faces varying from different age
levels [4], [5], [6], [7], [8], different modalities [9], [10], [11],
[12], [13], different poses [14], [15], [16], [17], and occlusions
[18], [19]. In this paper, we develop a robust recognition algo-
rithm to address the challenges in general face recognition with
a particular effect on matching faces across different poses (e.g.,
frontal versus profile). Datasets play an essential role in tackling
this problem because the generalization ability of a certain deep
model is closely related to the size of the training data. Therefore,
given an uneven and insufficient distribution of frontal and
profile face images, the in-depth features tend to focus on frontal
faces, and the learning results are exclusively biased incomplete
statistics. Some pioneering work has examined this problem and
reconstructed more datasets using different data augmentation
methods. A typical approach is to enrich input sources either
by synthesizing profile faces with appearance variations [20]
or by treating a set of images as one image input [21], to elim-
inate the need for profile data. Another method combines more
information, including multi-task learning [16], [17], [22] and
template adaptation [23], [24]. Specifically, multi-task learning
focuses on pose-aware targets combined with richer information,
such as illumination, expression, gender, and age, to comprehen-
sively boost recognition performance. Meanwhile, the methods
based on template adaptation learning usually create a mean 3D
model face. Employing migration and mapping, this method
avoids processing the 3D transformation at the image level.
Nevertheless, these strategies tend to increase the unnecessary
computational burden. Some other approaches use profile faces
to synthesize frontal faces to avoid large pose variations [25],
[26], [27], [28]. However, these methods suffer from artifacts
caused by occlusions and non-rigid expressions.

The studies mentioned above primarily rely on additional
data sources or labels. We seek to address this problem fun-
damentally and efficiently by clarifying the inner relationship
among different poses of samples. A recent approach called
Deep Residual Equivalent Mapping (DREAM) [15] has further
discussed the gap between the features of frontal-profile pairs
simply by approximating the difference using a deep learning
model. To a certain extent, this approach explores the gap in
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Fig. 1. Frontalization or face rotation in the feature space. Given that the
frontal-profile pair is generated by head rotation, we prove that the face rotation
in the image space is equivalent to an additive residual component in the deep
feature space. To show the equivalence, we reconstruct the image corresponding
to the modified feature (blue dot) and provide the visual result of the frontal face.

a way similar to the generative adversarial network (GAN),
which makes the target sample (frontal face feature) and gener-
ated sample (profile face feature) as close as possible through
encoding and decoding. Although mostly following empirical
observations, this approach offers incentives to delve into the
essence of deep features.

Frontal-profile pairs are generated by head rotations, which
should not be ignored in profile face recognition. However,
rotation matrices cannot be easily embedded in CNNs because
the group of rotation matrices is closed under multiplication but
not under addition. In contrast, the addition operation frequently
appears in all gradient descent calculations. Benefiting from
the pose estimation work [29] in the field of simultaneous
localization and mapping (SLAM), we introduce Lie algebra
to update the rotation matrices in CNNs.

In this paper, we prove that for each frontal-profile pair linked
by a rotation, their corresponding deep features also preserve
a complementary rotation relationship by Lie algebra. To the
best of our knowledge, this study makes the first attempt to
theoretically explore and explain the potential connection be-
tween the features of a frontal face and its profile counterpart.
Moreover, to facilitate the numerical calculation, we prove that
the face rotation in the image space is equivalent to an additive
residual component in the feature space in CNNs. Based on this
theoretical result, we propose the end-to-end Lie algebra resid-
ual network (LARNeXt), which achieves face frontalization or
rotation-and-render in the deep feature space, as shown in Fig. 1.
LARNeXt has three critical subnets for leveraging what we dig
out, namely, a soft regression subnet with novel multi-fusion
attention feature aggregation for efficient pose estimation, a
residual subnet for decoding rotation information from input
face images, and a gating subnet to learn rotation magnitude for
controlling the strength of the residual component contributing
to the feature learning process. We have performed comparative
experiments with more than 30 solutions in the recent five years
under various evaluation criteria and metrics and found that
our method outperforms representative state-of-the-art competi-
tors. Massive ablation experiments and abundant visualization
results can also corroborate the credibility of our theory and
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corresponding network designs. This paper extends our recent
conference publication LARNet [30] of ICML 2021 and ad-
dresses unsolved issues both theoretically and experimentally.
The significant improvements we made are listed as follows:

1) We polish the network architecture design so that our
LARNeXt follows an end-to-end mechanism, by adding a
head estimation subnet rather than requiring prior pose
labels, in which a novel attention feature aggregation
strategy is proposed for efficient and high-accuracy pose
estimation.

2) We refine our mathematical formulation model in inter-
pretability and comprehensibility, including the embed-
ding of Lie Algebra, a multi-fusion attention map, and the
geometrically appropriate /5> norm instead of the rough /.,
approximation.

3) We implement the visualization results of face reconstruc-
tion to further elaborate on the advantages of our method’s
feature representation, explore the proposed model’s scal-
ability on the 16 million industrial-grade dataset, and con-
duct a detailed failure case analysis with a future potential
improvement.

II. RELATED WORK

We briefly discuss previous work on profile face and large pose
face recognition. Besides, we also introduce some mathematical
background knowledge related to Lie algebra for interested
readers.

Insufficient Dataset: Many methods try to solve the profile
face recognition problem by avoiding the unevenness of datasets.
Masi et al. [20] proposed domain-specific data augmentation,
which is a more accessible method of increasing the size of
training data for face recognition systems and focused on cru-
cial facial appearance variations. Meanwhile, the multicolumn
network [21] and neural aggregation network (NAN) [31] try
to use additional information, such as a set of images or videos,
as input to address the potential shortcomings of a single image.
Despite showing some progress, these methods still have their
limitations. Specifically, they tend to falsely match the profile
faces of different identities and miss the frontal and profile faces
of the same identity.

Pose Variation: Many methods have been developed for large
poses. For instance, template-adaptation-based studies [23], [24]
have mainly conducted transfer learning using a constructed
classifier and synthesizer and performed pooling based on image
quality and head pose. As opposed to those techniques which
expect to learn pose invariance, pose-aware deep learning meth-
ods [16], [17] use multiple pose-specific models and render face
images to reduce sensitivity to pose variations. Other studies
use more additional labels instead of only poses. Multi-task
learning (MTL) is a widely used method that involves pose,
illumination, and expression estimations. Yin et al. [27] pro-
posed a pose-directed multi-task CNN and balanced between
different tasks. DebFace [28] (de-biasing adversarial network)
takes gender, age, and race into consideration and minimizes the
correlation among feature factors to reduce the bias influence
from other factors. Although effective, these methods yield
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high computational costs due to their use of multiple models
and tasks, and the accuracy of their results cannot meet higher
requirements.

Frontalization: Given the challenges associated with profiles
and large poses, some methods directly use existing datasets to
synthesize the frontal face and perform face recognition. Due to
the widespread use of GAN, FF-GAN [22] and DR-GAN [25]
have been applied and have outperformed many of their com-
petitors through their disentangled encoder-decoder structure for
learning a generative and discriminative representation. With the
rapid progress of 3D face reconstruction technology, research
interest in the projecting rendering of the frontal face after
reconstruction has also increased. Rotate-and-Render [28] is a
representative method for single-view images, which leverages
the recent advances in 3D face modeling and high-resolution
GAN to constitute building blocks given that the 3D rotation-
and-render of faces can be applied to arbitrary angles without
losing details. While reconstruction and synthesis only improve
visualization performance, they yield a relatively poor feature
representation as validated based on their performance on face
recognition tasks.

Feature Space: Some studies have considered the latent fea-
tures than the image itself. Shi et al. [32] proposed probabilistic
face embeddings (PFEs), which represent each face image as
a Gaussian distribution in the latent space. Meanwhile, feature
transfer learning [33] makes the under-represented distribution
closer to the regular distribution. These approaches attempt to
make the sample distribution tend to a Gaussian prior. Despite
paying attention to features, specific datasets or face recognition
techniques in real-world applications cannot guarantee that the
samples follow a Gaussian distribution; therefore, their intuition
and persuasiveness are generally below users’ expectations.
Another representative work, DREAM [15], uses the residual
network to directly modify the features of the profile face
to the frontal one, which is similar to our proposed method.
DREAM roughly bridges these features through mapping from
deep learning, and due to the lack of in-depth analysis of the
potential physical relationship between the frontal and profile
faces, the ad-hoc designed results of DREAM reach a bottleneck
of feature-representation-based methods. While the design of
DREAM mostly follows empirical observations, our work is the
first to explore how the face rotation in the 3D space affects
the deep feature generation process of CNNs. It mathemati-
cally reveals the fundamental and accurate relationship between
the rotation and resulting features. Based on these theoretical
findings, we propose LARNeXt, which not only significantly
outperforms DREAM but also pushes the boundary of the state
of the arts.

Prior Art of Lie Algebra: A Lie group includes the structure of
a differentiable manifold such that the addition, multiplication,
and inverse are differentiable maps, a property not possessed by
rotation in SO(3). When considering the derivative, the tangent
space of the group forms a Lie algebra ¢. A simple diagram
is shown in Fig. 2. For a more detailed description and proof,
refer to the following text and supporting material. Lie algebra
theory can adapt to visual tasks with 3D transformations. Tuzel et
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Fig.2. A simple diagram of Lie Algebra and rotation. Left: Mutual represen-

tation of Lie algebra and rotation under the perturbation scheme. Right: Gradient
descent form.

al. [29] used Lie algebra theory to define a new geodesic distance
and design the loss function of the network to optimize the
pose estimation training. The Lie Algebra Residual Network
(LARNet) [30] represents the first attempt to introduce Lie
algebra to a face recognition task for improving face recognition
performance. However, LARNet also faces limitations, such
as its approximations, empirical observations, and additional
prior labels. We then propose LARNeXt to compensate for
these shortcomings by achieving a more precise derivation,
integrating a soft stagewise regression subnet with multi-fusion
attention feature aggregation for efficient pose estimation from
a single RGB image and providing more ablation experiments
and visualization results for corroborating the credibility of our
theory and corresponding network designs.

III. METHODOLOGY

In this section, we assume that a frontal face and its profile
face have a corresponding rotation relationship in the original
3D space. For ease of understanding, only the rotation with the
orthogonal transformation relationship is discussed here. The
derivation of more complex euclidean transformation relation-
ships, including translation and zooming, can be found in our
supplementary material.

A. Problem Formulation

Our goals are to find a transformation between the features of
an input profile face image and the expected frontal face image,
to realize frontalization in the deep feature space, and to achieve
apowerful feature representation that is robust to pose variations
as shown in Fig. 1.

We denote F(x) as a feature extraction function in CNNs for
an input image x. For each pixel (u,v) in image x, we adopt
its homogeneous coordinate representation (u,v,1)", and for
convenience, we denote the collection of these 3D homogeneous
coordinates by x.

Let d be the dimension of layers, and the extracted feature be
F(x) € RY respectively. We shall prove that there exists a map
Romap() : RT — R that plays a similar role to rotation in the
deep feature space corresponding to the rotation R € SO(3) of
the (homogenized) image x :

F(R-x) = Rinap(F(x)). (D
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For the frontal face image x ¢ and its profile face image x,,,
the homography transformation matrix of these two images
degenerates into the rotation matrix: xy = R - x,,. Therefore,
we have:

F(xp) =FR-xp) = Rinap(F(xp)). 2)

We then use Lie group theory [34] and prove that the mapping
Rmap(-) can be decomposed into an additive residual compo-
nent that is solely determined by the rotation as

F(xyp) = F(xp) +w(R) - Cres (R, xp). 3)

Therefore, we only need a residual subnet C,.4 for decoding
pose variant information from the input face image, a robust head
rotation estimation subnet for obtaining rotation information,
and a gating subnet w to learn rotation magnitude for controlling
the strength of the residual component contributing to the fea-
ture learning process. (3) is the core principle of our proposed
method. The detailed derivations and experimental design are
presented in the following sections.

B. Rotation in Networks and Lie Algebra

To find R,qp, we directly explore and analyze the role of
rotation R in networks from (2). The authors in ResNet [35]
proposed the novel shortcut, which not only retains the depth of
deep networks, but also has the advantages of shallow networks
in avoiding the overfitting issue. The feature learning from the
shallow layer [ to the deep layer L is described as

L-1
xp =%+ Y H(x;w;), )
i=l
OLoss  OLoss . oxy,
8xl n 8XL 8Xl
OLoss o =
= 14— H (x:. w;
. ( +8xl; (Xz,wz)>, (5)

where x; represents the input of the [th residual block, and H (-)
is the residual function with weights w. Given that the second
term enclosed in big brackets in (5) quickly drops to 0, we focus
on the first principal term dLoss/0x..

Note that the rotation matrix R € SO(3) is not closed under
matrix additions. Therefore, in nonlinear optimization of CNNss,
updating R using derivations does not yield a new rotation
matrix [36]. Therefore, directly using R is not appropriate,
and we need to find a new approach for embedding R in the
network.

Inspired by prior work [29], we adopt Lie algebra with
its own addition, multiplication, and derivative to replace
the rotation matrix R in CNNs. First, each rotation matrix
R € R3*3 corresponds to a vector ¢ through the exponential
mapping [37]:

R = exp(¢"), ©)
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where " is the skew-symmetric operator. The detailed definition
of operator ”* and a proof for (6) can be found in the supplemen-
tary material.

Meanwhile, the vector ¢ can be obtained from R by the fol-
lowing Rodriguez’ rotation formula [38] and Taylor expansion:

oo

R=exp(6y") = Y (04"

n=0
= cos 01 + (1 — cos 0)pepT + sin O,
(7

where ¢ = 01 is in the Axis-Angle representation form, with
the unit vector 1) € R? being the direction of the rotation axis
and 6 being the rotation angle according to the right hand rule,
respectively. Given that R1) = 1, v is the eigenvector of matrix
R for eigenvalue Ag = 1. (7) leads to

tr(R) = 2cosf + 1. (8)
Therefore, we can solve ¢ as
¢ = O = arccos (”(RQ)_l> . ©)

We then show the addition and multiplication in Lie algebra
using Baker-Campbell-Hausdorff (BCH) formula [39], [40] and
Friedrichs’ theorem [41], [42] as follows:

exp (Ag") exp (¢) = exp (6 +31(¢) ' 20)"),

exp (¢ + Ag)") = exp (J1A¢)" ) exp (¢"),  (10)

where J; is the left Jacobian of SO(3). For point p € R?, the
derivative of Rp with respect to a perturbed rotation is

O(Rp) o &P (Ag")exp (¢") p —exp (¢") P
I(AP)  ap—0 A¢
= —(Rp)". (11)

For a current R;, we choose perturbation A¢”, such that
R, 1 = exp(A¢")R,. Then, for point p, (11) leads to

Ri11p = exp(A¢")R;p ~ R;p — (R;p) " Ad.

Meanwhile, for the target function to be optimized (denoted by
u), we use Taylor expansion to derive

u(Ri11p) = u (exp (A" ) R;p) = u ((1 + A¢") R;p)
ou

~u(R;p) — 7d
d=R;p

12)

(Rip)" Ag

(ST

=u(R;p) + 6" Ag. (13)

We need to determine A¢ such that the value of u decreases.
A possible choice is to select Ap = —aDJd, where o > 0 is a
small step size, and D is an arbitrary positive-definite matrix.
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By applying this perturbation within the scheme, we can update
the rotation matrix by R; 1 + exp(—aDd")R,.

Back to the original problem, given (10)—(13), we can rewrite
the first principal term of (5) as

OLoss ~ lim OLoss
6x£ A¢—0 exp ((¢p + Ap)") - x§ —exp (d)/\) x
B OLoss
T C®R-x)) -0
OLoss
IR x7)’ (14

Note that in (2), the homography relationship between the
two original images x,, and Xy is connected by a rotation,
but this relationship generally cannot be guaranteed in CNNs.
However, (14) suggests that this relationship is inherited in
another way during the gradient descent at each layer. In fact,
giventhat R € SO(3), R - x! and x{ are asymptotically stable
according to Lyapunov’s second method [43], [44]. With the
gradual training progress of ResNet, the feature vectors of
R - x/ and x{ have the same convergent representation, that
is, F(xy) = F(R - x,). Furthermore, we decouple the rota-
tion relation from face features into (9) and (12). Let Vs =
FR-%xp) — Rinap(F(x,)) € R? be the residual vector, and
we have:

Ronap(F(x£)) = F(xp) + Ry (Vres),

]:(Xf) = F(xp) + Rr_nlap(vres + Rmap(]:(xf)) - ]:(Xf))~
(15)

Given that the feature F(x,) is approaching to R,qp(F (X))
in the training stage (see the corresponding analysis in (17 in
Section III-C), (15) leads to

F(xp) = F(xp) + Ropiop(F(Xp) = Runap(F(xp))),  (16)

which agrees exactly with (3). Therefore, we can design the
gating control function w(R) as R;nlap to filter the feature flow
and maintain geometric constraints, and build the head pose
estimation subnet to efficiently obtain accurate rotation infor-
mation R. Meanwhile, the component C,..s (R, x,,) = F(x,) —

Rmap(F(xp)) is solved through residual subnet training.

C. Subnet Mechanism

As previously stated, we theoretically prove the feasibility
and provide a novel solution to the face recognition problem.
Following our theory, we design a succinct architecture for
our LARNeXt, and present an intuitive understanding of rel-
atively complex mathematical formulas, shown in Fig. 3. We
also explain the important compositions in detail and carefully
demonstrate their validity and rationality in this section.

1) Backbone: First, we propose a mutual representation re-
lationship between the features of frontal and profile faces to
guide our face recognition. However, before doing so, we need a
feature extraction backbone with superior performance. Inspired
by previous network theory researches, such as Saxe et al.” [45],
Highway Networks [46], and Balduzzi et al.” [47], we choose
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Expected frontal face feature
F(x) = F(xp) + ©(R) - Cres

Input image
profile face x,,
Residual learning

Cres

| Additive residual component
®(R) * Cres
Rotation variance w(R)

Fig.3. The architecture of the proposed LARNeXt. Adding a succinct residual
subnet, an efficient rotation estimation subnet, and the gating control function
to the clean feature learned from the existing state-of-the-art backbone would
suffice.

ResNet-50 as the network with the best layers after weighing
efficiency and accuracy. This network is also prevalent in the
literature and is very convenient for comparison. We select
ResNet-50 with a combined margin loss (CM(1, 0.3, 0.2)) of
ArcFace [3], whose loss function combines all margin penalties
of SphereFace [1] and CosFace [2]. Given that we only need
its feature extraction and hardly output the final classification
results, we cut off the final fully-connected (FC) layer commonly
used for classification in the original network. For any input face
image X, this backbone generates the corresponding deep feature
F(x).

2) Residual Learning Subnet: From (3) and (16), we ex-
pect to design a residual subnet C,.s(R,x,)= F(x,) —
Rmap(F(xp)) for decoding pose variant information from pro-
file face features. The residual formulations allow us to use
a succinct enough network structure for learning the residual
compensation from the clean deep features, which is a rela-
tively easy task. Residual learning can be arranged behind in
the backbone without revising any learned parameters of the
original model. Our residual learning has two fully-connected
layers, with Parametric Rectified Linear Unit (PReLU) [48]
as the activation function. We train this subnet by minimizing
{5 norm of the difference between the profile features F(x,)
and frontal features under the rotation R,,q,(F(xy)) using
stochastic gradient descent.

%ianH]:(Xp) - Rmap(va}—(Xf))H%v 7)
where (2, denotes the learnable parameters. We train this subnet
on frontal-profile pairs sampled from the MS-Celeb-1 M dataset
(mentioned in Section IV-B), and fix these parameters for the
testing. Applying a subnet with a complicated structure may
increase the risk of overfitting, and the design with two FC
layers considers both the task difficulty and the risk of model
robustness. We demonstrate the superiority of our design in
the following ablation experiment(Section IV-C1), and find that
such a succinct structure is enough.

3) Head Rotation Estimation Subnet: This section mainly
studies how to perform robust and efficient face pose estimation
on a single image to obtain the angle #. Considering the trade-off
between accuracy and efficiency, as well as the constraints of
the single view from a single image, we finally believe that the

Authorized licensed use limited to: Tencent. Downloaded on December 16,2023 at 07:26:16 UTC from IEEE Xplore. Restrictions apply.



11966

4 /4 /4 (roll, pitch, yaw)
29 Ty

N

wXhXc SSR'oL
xh crosslstage mapping regressi
v .
attention
stage: k=3 ] ///
/In K x ¢ 299regation Ko

Fig. 4. The architecture of the head rotation estimation subnet. We propose
a novel multi-fusion attention mechanism to explore the importance of feature
aggregation and use a soft regression SSRNet to achieve a high precision rotation
estimation.

design of the age estimation work SSRNet [49] is an attractive
solution, whose ideas of stagewise regression and dynamic range
significantly reduce the model size (about 0.32 M) yet maintain
high precision. However, for the pose estimation problem we are
concerned, it is necessary to transform its feature aggregation
strategy, which is a constant estimation of age, into a vector
estimation of the rotation angle. In conclusion, we model the
pose estimation problem as follows:

where K is the number of stages (K = 3 in our problem context),
and Vr(a )isa representative vector of rotation angle § groups with
the corresponding probability distribution p(*) at the k stage.
In this dynamic range case, a full-space classification problem
becomes a hierarchical classification solution, and we need to
aggregate features into representative vectors at each stage.

For the differences between our situation (three different angle
estimations) and age estimation (a single prediction), we need a
suitable feature aggregation method to polish the original regres-
sion backbone further. We investigate and analyze many extant
methods: NetVLAD [50] and Capsule [51] try to extract features
from a large whole but sacrifice the potential spatial information
of the feature map. FSA-Net [52] proposes a fine-grained map-
ping strategy, but its ad-hoc designed feature-scoring function
still has shortcomings that limit empirical performance. To
address this issue, we adopt the fine-grained mapping strategy
along with our novel multi-fusion attention map and replace
this scoring function with the widespread attention mechanism
to assign the weights of the features. The architecture of the head
rotation estimation subnet is shown in Fig. 4. Note that SSRNet
proposes these specific structures, e.g., stream one/two and SSR
regression, and refers to Section VI in the supporting material
for more details. Below we will solely explain our novel feature
aggregation strategy.

For each feature map M (w x h x ¢) exacted from SSRNet,
we have the attention map V(M (4, 5)), where ¥(+) is our de-
signed pixel-level attention function and M (i, j) € R®. Origi-
nally, we tried two solutions to ¥(-), namely, 1 x 1 convolution
and variance attention. In the first solution, WUy, (M (4,7)) =
sigmoid(oper * M(i,7)), where ok, is alearnable convolution
kernel, and the 1 x 1 convolution plays a role in weighting
features from input data sources. Another solution takes vari-
ance into consideration: W .. (M (i, ])) S (M (i,7) —
M (i, §))?, where M (i, j) = 1/¢ 3¢ _, My, (i, j). Nevertheless,

(18)
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Fig. 5.  Visualization results of our rotation estimation subnet on lab-standard
labeled samples from the OFD dataset. The input only needs a single RGB
image, and the colored lines (green, blue, and red) indicate the directions of
head rotation angle (roll, pitch, and yaw).

we find the shortcomings of these methods via an in-depth
analysis. Wy, may lead to a risk of model overfitting, whereas
W, 1s not learnable and is very sensitive to the difference
between the training and testing data. Meanwhile, we draw
inspiration from the “short-cut” mechanism of ResNet, and
the identical map: W,;4(M (i,5)) = M (i, ) can provide more
potential information. We build a multi-fusion attention map,
which averages all of the above predictions similar to ensemble
learning as follows:

\Illxl + \I/var + \I/id
3 .

Simple average guarantees a robust low bound when facing
unknown training/test data. To prove the superiority and ra-
tionality of our attention map, we conduct the corresponding
ablation experiments in Section IV-C2. After feature aggre-
gation, we use SSRNet to obtain the robust pose estimation
0 = (pitch, yaw,roll). The head rotation estimation subnet is
an embedded complete pose estimation module. We provide the
visualization results of our rotation estimation subnet on lab-
standard labeled samples from the OFD dataset in Fig. 5. Users
can also use ground-truth prior labels or other models. To verify
the superiority of our proposed head rotation estimation subnet,
we also conduct comparison experiments in Section IV-C2 and
provide extensive experimental results.

4) Gating Control Function: After obtaining the accurate
rotation angle, we need to design a gating control function w(R))
to analyze the rotation magnitude for controlling the strength
of the residual component contributing to the feature learning
process. Our attempt can be viewed as a correction mechanism
that adopts top-down information to influence the feed-forward
process and as an activation function to filter information flow. In
our problem context, w needs to satisfy the following geometric
constraints:

ew € [0, 1]. Intuitively, when the input s frontal face input xo,
almost no difference can be detected in the feature representation
in the same network, and C,..s of residual learning introduces
errors and compromises the classification ability. Therefore, the
gating control function is expected to be 0 at this time. Ideally,
the magnitude of the residual is the largest at the complete profile
pose: F(xo) — F(Xr/2). In this case, when the maximum value
of the gating control function is 1, we have :

F(Xo) = .F(Xﬂ-/Q) + 1% (.F(Xo) — f(Xﬂ./Q))

= f(X()).
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e w has symmetric weights. A gating control function tries
to learn the rotation magnitude for controlling the strength of
the residual component that contributes to the feature learning
process, and the same deflection angle should have the same
influence (e.g., yaw angle turning left or right). We also use data
flipping augmentation to improve the symmetry of the model
during training.

The roll, yaw, and pitch angles contribute differently to the
final face recognition performance. Face alignment eliminates
the roll’s effect (Section IV-A). While face images with large
pitch angles are relatively rare, we cannot ignore their small
yet essential contributions when pursuing further improvements
in recognition performance. Therefore, we abandon the rough
l~ approximation of the conference version and study how
to represent rotation angles more geometrically appropriately.
From (9), under axis-angle representation, the axis vector v is
a unit vector that indicates the direction of the rotational offset,
and rotation angle 6 represents the modulus length of the Lie
algebra ¢. Therefore, the /5 norm presents a suitable and precise
representation for Lie algebra in LARNeXt.

After combining all the above constraints and solving (8)
via Chebyshev polynomial approximation, we obtain w =
| sin 6| with sin @ = sin(||(Opitch s Oyaw, Oroir)]]2), for all angles
€ [—m/2,m/2], which ensures a one-to-one correspondence be-
tween the elements in Lie algebra ¢ and the rotation R and
guarantees the completeness of the proposed theory. The existing
work SIREN [54] has also shown that periodic activation func-
tions such as our used sin will achieve great performances. Sim-
ilarly, we conduct another corresponding ablation experiment of
different gating control functions in Section IV-C to prove that
our design outperforms its competitors. We only discuss here the
visual feature distribution results that improve the acceptance
and understanding of our theory in a qualitative level.

To demonstrate the effectiveness of our proposed subnet,
Fig. 6 illustrates its application for the same identity. When
image sequences of the same individual with different yaw
angles are used as inputs, ResNet can extract features and display
the distribution of vectors as red dots. We use our gating control
function with only the frontal face image to simulate pose
variations, and green dots denote the distribution of our result.
This visualization clearly shows that our model can accurately
simulate the feature vector distribution of different faces vary-
ing from yaw angles, thereby proving that our gating control
function has an improved feature representation capability and
is especially amenable to pose variations.

Fig. 7 shows the effect of our subnet for different identities.
This figure presents a challenging example even for the almost
blameless face recognition model [55]. We collect more frontal
and profile face data of the same two individuals and visualize
the feature vectors of all images corresponding to this sample.
Our subnet with the gating control function is instrumental in
achieving better classification and clustering performance.

To intuitively understand our theory further, we present more
rendered image results after reconstructing faces with the corre-
sponding features. We use the encoding-decoding mechanism of
an advanced TP-GAN model in [56] that can map deep features
back to the reconstructed images. This mechanism is used to
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(a) Gound-Truth image squence pose varies from -90° to 90°
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Fig. 6. The effect of our gating control function on the same identity. (a)

The top presents a sequence of images taken in real life, with the pose variant
ranging from —90° to 90° for the same individual. (b) The bottom shows the
feature distribution in the deep feature space. The dots represent the profile faces
whereas the stars denote the frontal faces. The red dots are the feature vectors
generated by the image sequence, and the green dots are the feature vectors
of the frontal face image (0°) with different yaw angle variants simulated by
our gating control function. Their similar distributions indicate that our gating
control function closely maps the features of the frontal and profile faces, thereby
enhancing the feature representation ability to accommodate pose variations.

visualize the original and mapped features generated by our
model. Some representative results are shown in Fig. 8. The
rendered reconstruction images are only used for visualization
purposes. The superiority of our LARNeXt can be fully validated
by quantitatively examining its performance in various face
recognition tasks. We also show many convincing experimental
results in the following section.

IV. EXPERIMENTAL RESULTS

We initially describe the implementation details of LARNeXt
(Section IV-A) and then briefly describe all the datasets we
used in the experiments along with their characteristics (Sec-
tion IV-B). We present many ablation studies and explain the
contribution of our experimental design to recognition perfor-
mance (Section IV-C). We also compare LARNeXt with exist-
ing methods and some findings on profile face representations
and then conduct detailed experiments on frontal-profile face
verification-identification tasks, general face recognition tasks
and a industrial-grade mega dataset (Section IV-D).

A. Implementation Details

Data Preprocessing: As shownin Fig. 9, we use MTCNN [57]
to detect the face areas and facial landmarks on both the training
and testing sets. We use flipping to achieve data enhancement
and strengthen the ability of our model to learn symmetry. We
also apply face alignment and scaling (224 x 224) to reduce
the impact of translation and zooming when we only consider
SO(3) instead of SE(3).

Training Details: The model is trained in 180 K iterations
with an initial learning rate of 0.1, and the learning rate is divided
by 10 at 100 K and 160 K iterations. The SGD optimizer has
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Fig. 7. The effect of our gating control function on different identities. This is
achallenging false positive example for a general face recognition model [2]. We
collect more frontal and profile face data of two individuals from the Celebrities
Frontal-Profile dataset [53] and visualize the feature distributions of all images.
Our model (on the right) with the gating control function obviously has a superior
classification and clustering ability.

47&,

15° profile faces

45° profile faces 60° profile faces

Fig. 8. Rendered face reconstruction images of 15°, 45°, and 60°. The odd
columns show the original profile faces, whereas the even columns depict the
reconstructed visualization results after deep feature mapping using our method.
The feature representation has not diminished regardless of the influencing fac-
tors, including gender, face decoration (glasses and beard), and head decoration
(hat).

a momentum of 0.9, and weight decay of 5e—4. We train the
ResNet and residual learning together and then train the residual
learning separately with pose variant frontal-profile face pairs
and dropout= 0.7. As for the rotation angles, we follow the
settings of SSRNet and FSA-Net, whose architectures are shown
in the supporting material with parameters (w, h, ¢) = (8, 8, 64)
for the feature map and m = 5, n = 7, ¢ = 16 for the feature
aggregation.
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(a) face flipping

(b) face alignment

Fig. 9. Prepossessing data on frontal and profile faces. (a) Face flipping: Data
enhancement for strengthening the ability of our model to learn symmetry; (b)
face alignment: reduce the impact of translation and rotation in a plane such that
the eyes lie along a horizontal line; (c) face scaling: reduce the impact caused
by zooming because focal length differs across all images such that they are
approximately identical in size.

Efficiency: The inference time of our model is around 5 ms per
image, whereas the time for pose estimation is around 0.17 ms
per image. Our lightweight LAR block only adds 1.3™ M FLOPs
based on ResNet-50 (4~ GG FLOPs) with head rotation estimation
subnet 1.017G FLOPs.

B. Datasets Exhibition

Training Data: We separately employ the two most widely
used face datasets, namely, the cleaned MS-Celeb-1 M database
(MSIMV2) [58] and CASIA-WebFace [59], as training data to
achieve a fair comparison with other methods. MSIMV2 is a
clean version of the original MS-Celeb-1 M face dataset that
has too many mislabeled images, and contains 5.8 M images of
85,742 celebrities. Meanwhile, CASIA-WebFace, which uses
tag-similarity clustering to remove noise from the data source,
contains 500 K images of 100 K celebrities from IMDb.

Testing Data: We explore many efficient face verification
datasets for testing. In accordance with the order of the different
face recognition task requirements in the following experiments,
we briefly introduce the scales and characteristics of each
dataset. (a) When studying the distribution of depth features
of input images, we need accurate pose labels and select the
Oriental Facial Database (OFD) [60], which sorts out 33,669
face images of 1,247 volunteers, with each volunteer taking
19 viewpoint images from -90 to 90 degrees at intervals of 10
degrees. The first subfigure in Fig. 6 presents a simple example.
(b) Our comparative experiments with competitors are mainly
conducted on profile datasets with large poses. Celebrities in
Frontal-Profile (CFP) [53] is a challenging frontal to profile
face verification dataset that contains 500 celebrities, each of
which has 10 frontal and 4 profile face images. We extensively
test another challenging dataset, the IARPA Janus Benchmark
A (1JB-A) [61], which covers extreme poses and illuminations
and contains 500 identities with 5,712 images and 20,4 14 frames
extracted from videos. (c) Apart from focusing on frontal-profile
face verification, we also conduct experiments on general face
recognition datasets to verify that our method can reach the
state-of-the-art for general face recognition tasks. By including
the most widely used LFW [62] dataset (13,233 face images
from 5749 identities) and YTF [63] dataset (3,425 videos of
1,595 different people), we also report the performance of
Cross-Pose LFW (CPLFW) [64], which deliberately searches
and selects 3,000 positive face pairs with pose difference to
add pose variation to intra-class variance and to fully justify
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TABLE I
ABLATION STUDY ON THE ARCHITECTURES OF RESIDUAL SUBNET

11969

TABLE II
ABLATION STUDY ON THE FEATURE AGGREGATION OF THE HEAD ROTATION
ESTIMATION SUBNET

[ Architecture of residual subnet [ EER ]

one FC 9.96 l Method MAE
one FC + one Conv. 8.84 w./0. aggregation 6.95
one Conv. + global average pooling 8.61 NetVLAD [50] 5.97
one Conv. + max pooling 8.73 Capsule [51] 4.24
Ours: two FC 7.92 FSA-Net [52] 3.75
The Training inputs include frontal-profile face pairs from the MSIMV2 Oursz Yix1 3.77
Lo . . Ours: Vyar 3.68

dataset. Evaluation is conducted on the CFP-FP dataset With a metric equal )
Ours: W 46 3.60

error rate.

the effectiveness of several face verification methods. (d) We
also extensively conduct an in-depth ablation experiment on the
large-scale CelebFaces Attributes (CelebA) Dataset [65], which
contains 10,177 celebrities and 202,599 face images covering
large pose variations.

Pose Data: We use three popular datasets for the training
and testing of rotation pose estimation. 300W-LP dataset [66] is
a 3D dataset based on the 300 W dataset and 3DMM model
simulation. This dataset contains 68 key points and camera
parameters, and adopts the proposed face profiling to generate
61,225 samples across large poses (1,786 samples from IBUG,
5,207 from AFW, 16,556 from LFPW and, 37,676 from HE-
LEN). AFLW2000 [66] is a dataset containing 2000 images that
have been annotated with image-level 68-point 3D facial land-
marks. This dataset is used for evaluating 3D facial landmark
detection models. The head poses are very diverse and often
difficult to detect by using a CNN-based face detector. The BIWI
dataset [67] contains over 15 K images of 20 people (6 females
and 14 males). The head pose range covers about +75 degrees
yaw and £60 degrees pitch. The ground truth is provided in the
form of the 3D location of the head and its rotation.

C. Ablation Studies

To prove that the proposed LARNeXt improves profile face
recognition performance, we conduct many ablation experi-
ments for the architectures with the gating control function,
for the form of the gating control function, for the multi-fusion
attention feature aggregation strategy and head pose estimation
performance, and for the feature distributions of other state-
of-the-art face recognition models with or without our subnet
design.

1) Residual Subnet Architecture: Inthis subsection, we study
the effectiveness of architectures with different components.
We train our results with the same backbone ResNet-50 and
frontal-profile face pairs from MS1IMV2 dataset. We perform
the evaluation on the CFP-FP dataset with a metric Equal Error
Rate (EER).

Table I compares the experimental performance of the two-
layer FC with other commonly used succinct architectures and
provides some quantitative and reliable results. The one-level
FC obtains an unsatisfactory result because its linear structure
is too simple for addressing complex problems. The one-level
FC with a 1D convolution layer preforms slightly better in
learning input patterns for the model. However, its local weight

The training settings are 300W-LP dataset and SSRNet. Evaluation is
conducted on the BIWI dataset with a metric mean absolute error (MAE).

sharing mechanism presents an obstacle in performance im-
provement. GoogleNet [68] uses the global average pooling
(GAP) method to reduce the number of parameters and the risk
of overfitting. This deep feature fusion method has excellent
prediction performance and can be used in different tasks, such
as semantic segmentation. However, for our required feature
representation, the model capacity of GAP is slightly inferior.
Max pooling allows for a more rapid convergence due to the
larger number of gradients returned during back-propagation
(LeCun [69]). However, this approach only has a slight effect
on performance improvement. Many studies have discussed the
role of two-layer FC adopted by our residual network design.
For example, the classic deep learning network AlexNet [70]
proves that two-layer FC is a reasonable approximation that
facilitates the learning of input patterns for the model and shows
that removing any FC will lead to a drop in performance by
around 2%. We believe that the two-layer FC can map the
abstract information in the receptive fields of different sizes to a
larger space, thereby improving the nonlinear expression ability
of the model. The experimental results show that the adopted
two-layer FC structure achieves the leading performance.

2) Head Rotation Subnet: We then examine the effects of
different feature aggregation strategies. On the basis of the soft
regression of SSRNet, we explore the performances of (1) w/o
aggregation (without aggregation), (2) NetVLAD [50], (3) Cap-
sule [51], (4) the scoring function of FSA-Net [52], and (5) Ours:
Wix1, Yyar, and U, 5. We conduct fair testing experiments on
the BIWI dataset, and the results are using the same backbone
SSRNet and trained on the 300W-LP dataset with the metric
Mean Absolute Error (MAE).

Table II shows that the w/o aggregation strategy, where the
stage of SSRNet is K = 1, only outputs the most important
orientation of the rotation angle. Therefore, this strategy only
yields a rough numerical result. Meanwhile, NetVLAD and
Capsule both consider the reduced feature aggregation method
from large to small () = 3), and improve the performance by
adopting different reduction methods. FSA-Net proposes a novel
fine-grained feature mapping for weight calculation and further
enhances the improvement resulting from feature aggregation.
We introduce an attention mechanism into our problem that
targets the importance of features, and all our variants clearly
outperform the other methods. In particular, the result of our
designed multi-fusion method ¥ ¢, is almost half of that w/o ag-
gregation, which represents a huge performance improvement.
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TABLE III
COMPARISONS WITH POSE ESTIMATION METHODS

[ Method [ Yaw(°) | Pitch(®°) | Roll(°) [ MAE |
ERT(68 points) [71] 23.53 13.18 10.61 17.48
FAN(12 points) [72] 12.40 6.71 8.35 10.17
KEPLER(GoogLeNet) [73] 5.86 11.27 8.92 9.65
3DDFA(standard model) [66] 5.53 8.25 8.40 8.21
Hopenet(best o = 2) [74] 6.56 6.44 5.47 6.84
FSA-Net(best caps) [52] 4.08 6.64 4.50 5.63
CTFIO(best refinement) [75] 3.53 4.12 3.11 3.99
3DDFA-v2(M+R+S) - - - 351
Img2pose(best) 3.43 5.03 3.28 391
Ours: U 75 3.06 318 2.53 2.74

The 300w-LP dataset is used for the training. Evaluation is conducted on
the AFLW2000 dataset with the differences between the euler angles (roll,
pitch, and yaw) of estimation and ground truths as criteria. The Quantita-
tive evaluation results under the metric MAE are also provided.

Given that the head rotation estimation subnet is a complete
pose estimation structure, we also compare our subnet with other
advanced pose estimation methods, such as ERT [71], FAN [72],
KEPLER [73], 3DDFA [66], Hopenet [74], FSA-Net [52], CT-
FIO [75], 3DDFA-v2 [76] and Img2pose [77]. The results use
the same training 300W-LP dataset. To display these results
intuitively and conveniently, we provide two evaluation criteria,
namely, 1) the differences between Euler angles (roll, pitch, and
yaw) of the estimation and ground truth, and 2) the metric MAE.

As shown in Table 111, our multi-fusion attention ¥ ¢,,, brings
a significant improvement in all evaluation indicators. As men-
tioned earlier, many methods ignore spatial information, and the
existing preprocessing procedure can solve rotation in the plane.
Therefore, these methods suffer from the sensitive roll item,
which should have been a relatively simple task but still remains
a problem. Our results achieve an average 2.53° error of the roll
angle, and the performance on the yaw and pitch angle is also
very eye-catching. Under the more comprehensive MAE metric,
our result (2.74) is nearly one-third ahead of the recent CTFIO
(best refinement: 3.99) [75] proposed in 2020. Our results are
also superior over the recent well-known methods 3DDFA-
v2(M+R+S[all modules]:3.51) and Img2pose (best refinement:
3.91). Our attention feature aggregation mechanism also avoids a
complex network design and achieves efficiency with precision.
The time cost for pose estimation is about 0.17 ms per image.

3) The Gating Control Function: We further study which
gating control function has the greatest contribution to perfor-
mance. To achieve a fair comparison with existing methods,
the CASIA-WebFace dataset and ResNet-50 are used for the
training, and an evaluation is conducted on Cele-A dataset with
a metric Equal Error Rate (EER).

In Table IV, identity mapping is denoted by w = 1, which
represents some GAN-based works yet ignores the internal
connection of the frontal-profile face, and relies only on the
generator and discriminator to produce results. The linear map-
ping w = 20 /7 represents a natural attempt and meets the ge-
ometric constraints mentioned previously. To some extent, our
gating control function acts as a filtering activation function,
so we compare that with two widely used activation functions
PReLU [48] and cReLU with OW [47]. The nolinear map-
ping w = sigm(46/m — 1) is reported by DREAM [15], and is
also taken into consideration. LARNet [30] w = | sin 6| achieves
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TABLE IV
ABLATION STUDY ON THE GATING CONTROL FUNCTION

[ Gating Control Function [ EER |
Identity mapping: w = 1 15.35
Linear mapping: w = 20/ 9.68
Nolinear mapping: w = sigmoid(40/m — 1) | 8.45
PReLU 9.72
cReLU with OW 7.92
LARNet: w = |sin (0oo )| 6.26
Our LARNeXt: w = | sin (62)| 6.03

The training settings are the CASIA-webface dataset and ResNet-
50. Evaluation is conducted on the celeba dataset with a metric equal
error rate (EER).

TABLE V
ABLATION STUDY ON OUR LAR SUBNET FOR THE FEATURE DISTRIBUTION

[ Method [ MSE |
Baseline ISM 0.56
Ours ISM + LAR 0.26
Baseline ArcFace 0.23
Ours ArcFace+LAR 0.09

The training settings are MSIMV2 dataset and ResNet-50. Evalua-
tion is conducted on the OFD dataset with a metric mean square
error (MSE).

an outstanding EER of 6.26. This observation ascertains its
high degree of correction to a profile face. Furthermore, our
LARNeXt addresses the approximation problem left by LARNet
and offers a better representation of the rotation angle. We fully
consider the contribution of yaw, pitch, and roll to the final result
theoretically, which cannot be ignored when pursuing further
performance improvement. As a result, we surpass the frontier
of LARNet (6.26) and obtain a higher score of 6.03.

4) Feature Distribution: We study from a quantitative level
whether our subnet design based on Lie algebra theory actually
strengthens the feature representation and clustering capabilities
of the original backbone, which is qualitatively described in Sec-
tion III-C. We choose two excellent representative face recogni-
tion methods: independent softmax (ISM) [55] and ArcFace [3]
as baselines, and will respectively explore the performance of
these models on the feature distribution before and after our
LAR subnetis added, which also helps to alleviate the gap in face
verification based deep feature. To achieve a fair comparison, the
MSIMV?2 dataset and ResNet-50 are used for the training. The
evaluation is conducted on OFD dataset with a metric Mean
Square Error (MSE) between the deep features of each pair,
which consists of a ground-truth face image with pose label and
a profile face feature generated by our models. An individual
visualization example is shown in Fig. 6, and our experiment
will give quantitative results on the whole dataset.

As shown in Table V, in the comparisons between the base-
lines and ours, we find that LAR subnet can reduce the MSE even
for strong and robust face recognition models. Our LAR subnet
also shows a more than 50% improvement for each baseline
(0.56 — 0.26 and 0.23 — 0.09), thereby proving our theory
about feature representation and distribution.

D. Quantitative Evaluation Results

We compare our method with more than 30 excellent methods
with different loss functions that are proposed from 2016 to
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TABLE VI
QUANTITATIVE EVALUATION ON THE [JB-A DATASET. AND O.S. DENOTES THE OPTIMAL SETTING, WHEREAS F

[ Method | TAR@FAR=0.01 TAR@FAR=0.001 | Rank-1 Rank-5 |
Wang et al. [78] 0.729 0.510 0.822 0.931
Pooling Faces [23] 0.819 0.631 0.846 0.933
Multi Pose-Aware [17] 0.787 — 0.846 0.927
DCNN Fusion (f.) [79] 0.838 — 0.903 0.965
PAMs [16] 0.826 0.652 0.840 0.925
Augmentation+Rendered [20] 0.886 0.725 0.906 0.962
Multi-task learning [22] 0.787 — 0.858 0.938
TPE(f.) [80] 0.900 0.813 0.932 —
DR-GAN [25] 0.831 0.699 0.901 0.953
FF-GAN [27] 0.852 0.663 0.902 0.954
NAN [31] 0.921 0.861 0.938 0.960
Multicolumn [21] 0.920 — — —
VGGFace2 [81] 0.904 — — —
Template Adaptation(f.) [24] 0.939 — 0.928 —
DREAM [15] 0.872 0.712 0.915 0.962
DREAM(E2E+retrain,f.) [15] 0.934 0.836 0.939 0.960
FTL with 60K parameters (o.s.) [33] 0.864 0.744 0.893 0.947
PFEs [32] 0.944 — — —
DebFace [82] 0.902 — — —
Rotate-and-Render [28] 0.920 0.825 — —
HPDA [83] 0.876 0.803 0.84 0.88
CDA [84] 0.911 0.823 0.936 0.957
LARNet [30] 0.951 0.874 0.949 0.971
Ours:LARNeXt 0.955 0.891 0.965 0.979

Denotes fine tuning/refinement. The symbol ‘-’ indicates that the metric is not available for that protocol. The MSIMV2 dataset is used for the training.

2021. These technologies cover template based, GAN, residual
learning, 3D reconstruction, and other method systems. They
aim at various tasks, including face search, face recognition,
face verification, and large pose recognition. All numerical
statistics are the best results obtained from original quotation,
cross-reference, and experimental reproduction.

1) 1JBA Dataset: Verification and Identification Tasks With
State of the Arts: In this experiment, we evaluate our method
on the challenging benchmark IJBA that covers full pose vari-
ation and complies with the original standard protocol. The
evaluation metrics include the popular True Acceptance Rate
at False Acceptance Rate (TAR@FAR) of 0.01 and 0.001 on the
verification task and the Rank-1/Rank-5 recognition accuracy
on the identification task. The MS1MV?2 dataset and ResNet-50
are used for the training.

Table VI compares our model with various state-of-the-art
techniques. LARNet reaches 0.951 (TAR@FAR=0.01) with
refinement and end-to-end retrain, whereas our LARNeXt
achieves a better performance with 0.955. Both of these two
models outperform other methods by a large margin. Our meth-
ods also show a significant improvement over the more chal-
lenging TAR@FAR=0.001 (0.874 and 0.891 respectively). For
face identification, LARNeXt shows an advantage in both Rank-
1 (0.965) and Rank-5 (0.979), and also achieves an advanced
performance in both recognition and verification.

To fully reflect the advantages of LARNeXt on the face
verification task, we fairly perform comparative experiments
on the more challenging [JB-B/IJB-C datasets with the

TABLE VII
QUANTITATIVE EVALUATION ON THE IJB-B/IJB-C DATASET. AND O.S.
DENOTES THE OPTIMAL SETTING, WHEREAS F

TAR@FAR=0.0001

Method B-B(%) | IB-C(%)
CosFace (0.s.) [2] 94.80 96.37
ArcFace (0.s.+f.) [3] 94.25 96.03
CircleLoss [85] - 93.95
Sub-center Arcface [86] 94.94 96.28
MV-Softmax Loss [87] 93.6 95.2
Curricularface [88] 94.8 96.1
Broadface [89] 94.97 96.38
URface [90] - 96.6
Groupface [91] 94.93 96.26
DUL [92] - 94.61
Magface [93] 94.51 95.97
UPL Arcface [94] 95.56 96.76
Our:LARNeXt 95.72 97.26

Denotes fine-tuning/refinement. All results are the
best-reported ones in original papers or from comparative
experiments in other published papers.

metric TAR @FAR=0.0001. We also provide many competitors’
results over the past three years, including CosFace [2], Arc-
Face [3], CircleLoss [85], Sub-center Arcface [86], MV-Softmax
Loss [87], Curricularface [88], Broadface [89], URface [90],
Groupface [91], DUL [92], Magface [93], and UPL Arcface [94],
which are the best-reported ones in original papers or from
comparative experiments in other published papers. Table VII
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TABLE VIIT
QUANTITATIVE EVALUATION ON THE CFP-FP DATASET. AND O.S

[ Method | Verification(%) |
SphereFace (0.s.+f.) 94.17
CosFace (0.s.) 94.40
ArcFace (0.s.+f.) 94.04
URFace (all modules, o.s.) 98.64
Human-level 98.92
LARNet 99.01
LARNeXt 99.19

Denotes the optimal setting, whereas f. Denotes fine
tuning/refinement. The MS1MV2 dataset and ResNet-50 are
used for the training.

shows that our proposed LARNeXt (95.72/97.26) consistently
outperforms these state-of-the-art methods.

2) CFP-FP Dataset: Profile Face Verification Challenge:
We employ CFP-FP as our frontal profile face verification dataset
with the protocol that the whole dataset is divided into 10
folds, each containing 350 same and 350 not-same pairs of 50
individuals. The MS1MV2 dataset and ResNet-50 are used for
the training.

Table VIII shows that the face verification results of state-
of-the-art face recognition models are around 94%-. In 2020,
the latest universal representation learning face work (UR-
Face) [90], has achieved an astonishing improvement of 98.64%
under the auxiliary learning of a large number of modules, such
as variation augmentation, confidence-aware identification loss,
and multiple embeddings. However, LARNet achieves a 99.01%
improvement in 2021, outperforming all of its competitors. As
for further advanced LARNeXt, our model achieves a 99.19%
performance. To the best of our knowledge, these two are the
first to surpass the reported human-level performance (98.92%)
on the CFP-FP dataset. LARNeXt reduces the error by approx-
imately 20% under high-precision result of LARNet.

3) LFW, YTF and CPLFW Datasets: General Face Recogni-
tion: To further highlight the superiority of our LARNeXt, we
conduct an in-depth comparison on general face recognition. The
LFW and YTF datasets are the most widely used benchmarks
for unconstrained face verification on images and videos. We
follow the unrestricted with labelled outside data protocol to
report the performance. CPLFW emphasizes pose difference
to further enlarge intra-class variance. The CASIA-WebFace
dataset and ResNet-50 are used for the training. To achieve a
fair comparison with existing methods, we do not report the
results of more complex networks (e.g., ArcFace[ResNet-100]).

Table IX shows that because of the very small size of the
LFW dataset, almost all methods can achieve a performance
of 994-. Although the meaning behind this result is very weak,
our method achieves a improvement of 99.69, which is also
at the forefront and is only inferior to the HUMAN-Fusion
performance of 99.85. We use this comparative result for an
extensive study. The same observation is made for the video-
sampled dataset YTF, and the results of our LARNeXt remain
superior compared over those shown in ResNet-50-based face
recognition work. We also introduce a more challenging CPLFW
dataset with a large number of poses, and has highly realistic
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TABLE IX
QUANTITATIVE EVALUATION ON THE GENERAL FACE RECOGNITION DATASETS:
LFW, YTF, AND CPLFW. AND O.S

| Method | LFW  YTF  CPLFW |
HUMAN:-Individual | 97.27 - 81.21
HUMAN-Fusion 99.85 - 85.24
DeeplID [95] 99.47  93.20 -
Deep Face [96] 9735 914 -
VGG Face [97] 98.95 97.30 90.57
FaceNet [98] 99.63  95.10 -
Baidu [99] 99.13 - -
Center Loss [100] 99.28 949 85.48
Range Loss [101] 99.52  93.70 -
Marginal Loss [102] 9948  94.98 -
SphereFace+(o.s.) [1] | 99.47  95.0 90.30
CosFace(o.s.) [2] 99.51  95.1 -
ArcFace(o.s.) [3] 99.53 - 92.08
LARNet [30] 99.61  95.63 93.23
Ours: LARNeXt 99.69 95.91 93.77

Denotes the optimal setting, whereas f. Denotes fine-tuning/refinement.
Symbol ‘-’ indicates that the metric is not available for that protocol. For
fairness, the casia-webface dataset and ResNet-50 are used for the
training.

TABLE X
QUANTITATIVE RESULTS OF THE MEGA TRAINING DATASET (MTD)

Training Dataset MSIMV?2 MTD
Size (img & id) 5.8M & 86K | 16M & 622K
Evaluation
YTF 0.9591 0.9614
CFP-FP 0.9919 0.9929
AgeDB-30 0.9773 0.9830

Evaluation is conducted on three representative datasets with the Metric
ACC.

pose intra-class variation considerations. Our LARNeXt also
demonstrates its superiority with the improvement of 93.77.

4) Mega Training Dataset: Industrial-Grade Face Recog-
nition Tasks: In this study, we leverage an industrial-grade
training dataset called mega training dataset (MTD) to further
improve the performance of our approach. The mega training
dataset (MTD) that we use is composed of several public datasets
and a private face dataset, containing 16,565,811 images from
621,587 identities. To achieve a fair comparison, in our experi-
ments we remove face images belonging to identities that appear
in the testing datasets. We select three popular and representative
datasets for evaluations, including general face recognition YTF
dataset, profile face recognition CFP-FP dataset and challenging
AgeDB-30 dataset [103], while LFW and its variants cannot be
considered due to many overlapping identities with MSIMV2.

The comparative results are reported in Table X, from which
we can see that the performance of our approach can be further
improved across ALL three different testing datasets. Especially
for the CFP-FP dataset, the error rates can be reduced by approx-
imately 14% under high-precision result (99.19% — 99.29%).

E. Failure Analysis and Future Improvement

To investigate the limitations of the proposed method, we
have traced the original images of the failure cases and found an

Authorized licensed use limited to: Tencent. Downloaded on December 16,2023 at 07:26:16 UTC from IEEE Xplore. Restrictions apply.



YANG et al.: LARNEXT: END-TO-END LIE ALGEBRA RESIDUAL NETWORK FOR FACE RECOGNITION

Higher t

. confidence
Positive example

images
Lower J
confidence

Target image
Higher t
confidence

Negative example|
images

Lower J
confidence

Test images

Target images

Fig. 10. Case analysis. Left: Highly blurred images with consistent hue are
positive examples, while high-resolution images with hue corrupted by pose or
lighting are negative examples. Right: Face matches tend to share the same hue,
pose, and lighting.
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Fig. 11. Quantitative experiments of the hue theory with results for the
illumination variation samples on the OFD dataset.

interesting observation: the intrinsic properties of the images can
aid face recognition, such as hue - the distribution relationship
of pixel RGB values. As shown in Fig. 10, the test images on the
top are highly blurred faces and do not look like good quality
samples, but it is overjoyed that each of them can accurately
match the target image with a high confidence score. But the
score is drastically low for the test images on the bottom, which
are high-definition profile face images with a large pose or ter-
rible lighting. Moreover, when performing 1:N face verification
with the seed library on more samples, we found that at the
highest confidence successfully matched samples always tended
to share the same hue, pose, or lighting. We speculate that the
occlusion caused by the large angle and the shadow brought by
the lighting destroy the harmony of the entire facial hue, which is
inconsistent with the target image, resulting in a face mismatch.

It is worth noting that the intrinsic hue theory discussed
above does not imply that two images with a match must have
exactly the same lighting conditions or poses. we have verified
that different lighting will slightly change the confidence score
rather than have a decisive impact with a simple quantitative
experiment on the OFD dataset [60]. It shows that from the
illustration (Fig. 11) where the artifacts brought by one-sided
light will cause a little interference. Still, the verification results
of faces under natural light and in shadow are not different.
Therefore, we conclude that the hue distribution of the whole
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face will influence the accuracy of the face-matching, but the
change of lighting or pose will only affect the hue distribution.

Therefore, we believe that the pixel RGB values of the image
have some intrinsic properties, which are not affected by uniform
transformations externally (e.g., the frontal face image becomes
blurrier overall) but are heavily influenced internally (e.g., too
much occlusion and shadow from one-sided lighting can destroy
this intrinsic nature). By exploring the distribution of intrinsic
properties affecting latent space features, we can recover the
inner relationship for challenging test samples and alleviate
the impact of the large pose angle and terrible lighting. The
theoretical research about intrinsic properties may be a new
direction for future improvement.

V. CONCLUSION

We proposed LARNeXt for an enhanced large pose or pro-
file face recognition performance. First, we presented a novel
method with Lie algebra theory to explore how face rotation in
the 3D space affects the deep feature generation process, and
proved that the face rotation in the image space is equivalent to
an additive residual component in the deep feature space, which
is only determined by the rotation. We also designed three impor-
tant components, including a residual learning subnet for decod-
ing rotation information from input face images, a soft regression
subnet with multi-fusion attention feature aggregation for effi-
cient pose estimation, and a gating control function derived using
Lie algebra that learns the rotation magnitude and controls the
strength of the residual component contributing to the feature
learning process. We present the results of ablation studies to
verify the effectiveness of our theory. Compared against various
state-of-the-art techniques on the benchmark datasets, our exten-
sive experiments demonstrate the superior performance of our
models on frontal-profile face verification, face identification,
general face recognition, and industrial-grade tasks.
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