

LARNet: Lie Algebra Residual Network for Face Recognition

Xiaolong Yang, Xiaohong Jia, Dihong Gong, Dong-Ming Yan, Zhifeng Li, Wei Liu

Introduction

A major challenge in practical face recognition applications lies in significant variations between profile and frontal faces.

NOT EASY for face recognition

with large pose or profile faces !

Introduction

□ Traditional techniques:

Masi et al. (2016)

- Enrich sources by the synthesis of profile faces
- Unnecessary computational burdens

Rotate-and-Render (2020)

- Frontalize faces under all pose ranges
- Occlusions and non-rigid expressions

Probabilistic Face Embeddings (2019)

- Represent face images as a Gaussian distribution
- Overly strong hypothesis prior

Our method

□ We explore how face rotation in the 3D space affects the deep feature generation process.

The difference between frontal and profile face images \rightarrow Head rotation in 3D space

Face recognition for images

 \rightarrow Clustering in the deep feature space

Our method

□ Rotation matrices are not easy to be embedded in CNNs.

Rotation group is not completely closed.

 $\forall R_1, R_2 \in SO(3), R_1 \cdot R_2 \in SO(3)$ $\forall R_1, R_2 \in SO(3), R_1 + R_2 \in SO(3)$ X

- □ New tools Lie group and Lie algebra
 - closed under addition and multiplication operations \rightarrow Lie group
 - derivable \rightarrow smooth and continuous \rightarrow Lie group (differential manifold)
 - derivative operation \rightarrow tangent space of Lie group \rightarrow Lie algebra
 - non-linear optimization \rightarrow Lie algebra attached to the vector space

Our method

The frontal-profile face feature pairs in ResNet based on the Lie algebra theory:

$$\mathcal{F}(\mathbf{x}_f) \approx \mathcal{F}(\mathbf{x}_p) + \mathcal{R}_{map}^{-1}(\mathcal{F}(\mathbf{x}_p) - \mathcal{R}_{map}\mathcal{F}(\mathbf{x}_p))$$
$$\mathcal{F}(\mathbf{x}_f) = \mathcal{F}(\mathbf{x}_p) + \omega(\mathbf{R}) \cdot \mathbf{C}_{res}(\mathbf{R}, \mathbf{x}_p)$$

C_{res} : a residual subnet for decoding rotation information from input face images

• $\omega(\mathbf{R})$: a gating subnet to learn rotation magnitude for controlling the strength of \mathbf{C}_{res}

Visualization results – feature distributions

(a) A ground-truth image sequnce: pose variant is from -90° to 90° .

□ Feature Representation

different-pose samples with the same identity

false positive pair

frontal face data

profile face data

The feature distributions of the other method (left) and ours (right)

□ Feature Clustering

different-pose samples with the different identities

Visualization results – reconstructed faces

 15° profile faces

 $45^{\,\circ}\,$ profile faces

 60° profile faces

Quantitative evaluation

Method	TAR@FAR=0.01	TAR@FAR=0.001	Rank-1 Acc.	Rank-5 Acc.
Wang et al. (2016)	0.729	0.510	0.822	0.931
Pooling Faces (Hassner et al., 2016)	0.819	0.631	0.846	0.933
Multi Pose-Aware (AbdAlmageed et al., 2016)	0.787	_	0.846	0.927
DCNN Fusion (f.) (Chen et al., 2016)	0.838	—	0.903	0.965
PAMs (Masi et al., 2016a)	0.826	0.652	0.840	0.925
Augmentation+Rendered (Masi et al., 2016b)	0.886	0.725	0.906	0.962
Multi-task learning (Yin & Liu, 2017)	0.787	_	0.858	0.938
TPE(f.) (Sankaranarayanan et al., 2017)	0.900	0.813	0.932	_
DR-GAN (Tran et al., 2017)	0.831	0.699	0.901	0.953
FF-GAN (Yin et al., 2017)	0.852	0.663	0.902	0.954
NAN (Yang et al., 2017)	0.921	0.861	0.938	0.960
Multicolumn (Xie & Zisserma, 2018)	0.920	_	—	_
VGGFace2 (Cao et al., 2018b)	0.904	—	—	_
Template Adaptation(f.) (Crosswhite et al., 2018)	0.939	—	0.928	_
DREAM (Cao et al., 2018a)	0.872	0.712	0.915	0.962
DREAM(E2E+retrain,f.) (Cao et al., 2018a)	0.934	0.836	0.939	0.960
FTL with 60K parameters (o.s.) (Yin et al., 2019)	0.864	0.744	0.893	0.947
PFEs (Shi & Jain, 2019)	0.944	—	—	_
DebFace (Gong et al., 2020)	0.902	_	—	_
Rotate-and-Render (Zhou et al., 2020)	0.920	0.825	—	_
HPDA (Wang et al., 2020)	0.876	0.803	0.84	0.88
CDA (Wang & Deng, 2020)	0.911	0.823	0.936	0.957
LARNet	0.941	0.842	0.936	0.968
LARNet+	0.951	0.874	0.949	0.971

Quantitative evaluation on IJB-A dataset

Our results surpass many competitors in the recent 5 years under all 4 evaluation criteria:

Verification task

achieve 95%+ under TAR@FAR=0.01

- & 87%+ under TAR@FAR=0.001
- Identification task

achieve 95% under Rank-1 recognition accuracy

& 97%+ under Rank-5 recognition accuracy

□ Quantitative evaluation on CFP-FP dataset □ Quantitative evaluation on LFW,YTF, and

Method	Verification (%)
SphereFace (o.s.+f.)	94.17
CosFace (o.s.)	94.40
ArcFace (o.s.+f.)	94.04
URFace (all modules, MS1MV2, o.s.)	98.64
Human-level	98.92
LARNet	98.84
LARNet+	99.21

- The first result achieves 99%+ on CFP-FP dataset.
- The first result surpasses the reported human-level.

Quantitative evaluation on LFW,YTF, and CPLFW datasets

Method	LFW	YTF	CPLFW
HUMAN-Individual	97.27	-	81.21
HUMAN-Fusion	99.85	-	85.24
DeepID (Sun et al., 2014)	99.47	93.20	-
Deep Face (Taigman et al., 2014)	97.35	91.4	-
VGG Face (Parkhi et al., 2015)	98.95	97.30	90.57
FaceNet (Schroff et al., 2015)	99.63	95.10	-
Baidu (Liu et al., 2015a)	99.13	_	-
Center Loss (Wen et al., 2016)	99.28	94.9	85.48
Range Loss (Zhang et al., 2017)	99.52	93.70	-
Marginal Loss (Deng et al., 2017)	99.48	95.98	-
SphereFace(o.s.) (Liu et al., 2017)	99.42	95.0	81.4
SphereFace+(o.s.)	99.47	_	90.30
CosFace(o.s.) (Wang et al., 2018a)	99.51	96.1	-
CosFace*(MS1MV2,R64, o.s.)	99.73	97.6	-
Arcface(o.s.) (Deng et al., 2019)	99.53	_	92.08
ArcFace*(MS1MV2,R100,f.)	99.83	98.02	95.45
Ours: LARNet	99.36	96.55	95.51
Ours: LARNet+	99.71	97.63	96.23

Our method also outperforms on general face recognition datasets.

LARNet: Lie Algebra Residual Network for Face Recognition

yangxiaolong17@mails.ucas.ac.cn

paradocx.github.io

Paper Homepage

QR Code