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Abstract We present a simple yet efficient algorithm
for recognizing simple quadric primitives (plane, sphere,
cylinder, cone) from triangular meshes. Our approach is
an improved version of a previous hierarchical clustering
algorithm, which performs pairwise clustering of triangle
patches from bottom to top. The key contributions of
our approach include a strategy for priority and fidelity
consideration of the detected primitives, and a scheme
for boundary smoothness between adjacent clusters.
Experimental results demonstrate that the proposed
method produces qualitatively and quantitatively better
results than representative state-of-the-art methods on
a wide range of test data.

Keywords quadric primitive extraction; mesh; hierar-
chical clustering

1 Introduction

Triangular meshes are one of the most popular
representations of 3D shapes in computer graphics
and 3D vision. In recent years, with the rapid
development of 3D data acquisition techniques, it has
become much easier to obtain precise geometric data.
However, the obtained raw data has a large number
of elements and lacks high-level information, so is
difficult to use directly in downstream applications.
For example, in industrial design and manufacturing
applications, the original computer aided design
(CAD) model might be unavailable or unsuitable for
processing by current software for various reasons,
leaving only a tessellated triangular mesh available.
Hence the detection and recognition of high-level
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primitives in complex 3D data are required by many
applications, such as reverse engineering [1, 2], 3D
printing [3, 4], and other digital technologies.

Many algorithms exist for mesh segmentation and
primitive extraction for various purposes, for example,
convex decomposition [5], parametric shape extraction
(planes [6], spheres and cylinders [7], developable
patches [8], ellipsoids [9, 10], or general quadrics [11]),
and semantic object recognition for indoor/outdoor
scenes [12].
segmentation algorithms can be classified into top—
down decomposition (automatic or interactive) [13,
14], hierarchical bottom-up clustering, region growing
[15], variational approximations [6, 7, 16], and more

From the algorithmic point of view,

recent techniques based on deep learning [17], etc.
However, the detection of simple primitives is an ill-
posed problem. None of these methods is universally
applicable in all situations.

Amongst these methods, hierarchical clustering is
the simplest and most efficient algorithm for primitive
detection, especially for CAD models [18, 19]. Tt
performs pairwise clustering of adjacent clusters
from bottom to top, according to designed merging
criteria. In this paper, we propose an improved
hierarchical clustering algorithm for extracting simple
planar and quadric primitives from triangular meshes.
Three major improvements are made upon previous
algorithms, and an example result is shown in Fig. 1.
Firstly, the primitive priority is taken into account
during clustering, which is plane > cylinder > sphere
> cone, where > denotes “is preferred to”. Secondly,
the smoothness of the boundary of each cluster is
characterized by an additional regularization term.
Third, fidelity is considered to avoid unnecessary
merging even under acceptable fitting error, as is
shown in Fig. 3.

We have conducted extensive comparisons with
existing representative approaches [11, 18-20], and
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(2) HMS

(b) VMS (c) FAS

(d) Ours (e) Error colormap

Fig. 1 Comparisons with representative approaches: (a) Hierarchical Mesh Segmentation (HMS) [19], (b) Variational Mesh Segmentation
(VMS) [11], (¢) Feature-Aligned Segmentation (FAS) [20], and (d) our result. Colors are randomly assigned to segmented patches. (e) Error
colormap. The color represents the distance from the point in the model to the fitted surface. Blue (value=0) indicates that the point is exactly
located on the fitted surface, while red (value=1) indicates the largest distance between the fitted surface and the data point. Our result has
better boundary smoothness and more meaningful extracted primitives, as highlighted.

demonstrated the advantages of our approach using

a wide range of test data. The main contributions of

this paper include the following:

e a simple yet efficient algorithm for primitive
recognition using hierarchical face clustering;

e simultaneous consideration of both shape priority
and fidelity during clustering;

e a new boundary smoothing formulation for
improved boundary regularization.

2 Related work

Primitive extraction can be regarded as a mesh
segmentation problem, which has been comprehen-
sively studied in recent decades [21, 22]. Various
criteria have been proposed for different tasks.
For example, approximation fidelity and patch
smoothness are the major concerns in reverse
engineering and shape approximation, 3D printing
imposes the printability and size constraints for each
part, shape analysis and parsing segment shapes along
concave lines, while scene understanding performs
semantic labeling for high-level primitives. In the
following, we focus on simple primitive extraction
algorithms, and briefly consider major mesh
segmentation approaches for different applications.

2.1 Shape approximation

Region growing is commonly used in many reverse
engineering systems to extract smooth regions for
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scanned CAD meshes [1, 15, 23, 24]. It is also the
key component of other clustering-based algorithms.
Starting from a seed point, it repeatedly groups
neighboring unlabeled elements with similarity
of local properties, e.g., normals or curvatures.
Although region growing is very efficient, it is difficult
to predict the number of patches and always needs a
certain amount of post-processing.

Variational approximation performs primitive
fitting and region growing repeatedly to minimize
an energy function with respect to different shape
primitives. This optimization process is also known
as Lloyd iteration [25]. Various metrics have been
designed for extracting different primitives, e.g.,
planes [6], spheres and cylinders [7], ellipsoidal
patches [9] and volumes [10], developable surfaces
[8], and general quadric surfaces [11, 16]. This type
of approach works well for clean shapes with clear
structures, but is often time consuming due to its
need for optimization.

RANSAC can be used to extract parametric
primitives from raw data directly [26]; it originated
in the computer vision community. However, the
extracted primitives cannot be guaranteed to form
connected regions and misclassification can occur.
Hence, it is restricted to use as a pre-processing step
for other algorithms [27].

Hierarchical clustering performs pairwise clustering
of adjacent elements from bottom to top. A priority
queue is used to determine which pair should be
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clustered. A cost function is designed to measure
the cost of merging a pair of clusters. For example,
Garland et al. [18] measured planarity and the
regularity of clusters. Attene et al. [19] extended the
cost function to simple quadric primitives (sphere and
cylinders) and considered the convexity of volumetric
components. These approaches work very well for
shapes consisting of simple primitives, but always lead
to non-smooth segmentation boundaries for scanned
data.

2.2 Shape decomposition

Part salience and minima rules [28] are widely used
in many shape analysis tasks; the concavity of shapes
is the main cue used to guide the segmentation.
This type of approach is also known as part-based
segmentation [29]. Katz and Tal [13] proposed a
novel hierarchical mesh decomposition algorithm
based on fuzzy clustering and graphcut. Lai et
al. [30] solved the shape decomposition problem using
a random walk formulation. Lafarge et al. [31]
used a Markov random field (MRF) to label the
vertices of the mesh. Lien et al. [5] explored an
alternative partitioning strategy that decomposes a
given model into approximately convex pieces for
applications such as collision detection. Chen et
al. [32] described a benchmark for evaluation of
3D mesh segmentation algorithms, which revealed
the underlying theoretical concepts and classified
segmentation algorithms. Due to the difficulties
of automatic segmentation, some approaches allow
user interaction to assist the segmentation process
[14, 33, 34]. Instead of segmentation in Euclidean
space, some approaches first transform the input
mesh into the frequency domain and apply spectral
clustering of the shape [35, 36].

Instead of using minima rules, feature lines can
also be used for segmentation. Such algorithms first
extract ridges and valleys [37] from input meshes,
and then remove small features by filtering and
extend the major ones to form closed feature loops
[20, 38]. The enclosed regions are extracted as the
final segmentation.

Mesh decomposition is also required in 3D printing
applications: due to size and printability constraints,
an input shape has to be decomposed into small pieces
[3] or sub-components that can readily be printed
[4, 39] or packed [40].

More recently, machine learning techniques were

introduced in the geometry processing community
[41, 42]. Guo et al. [43] presented a novel approach
for 3D mesh labeling using deep convolutional neural
networks (CNNs); it proved to be more robust. On this
basis, Kalogerakis et al. [41] combined image-based
fully convolutional networks (FCNs) and surface-based
conditional random fields (CRFs) to yield coherent
segmentations of 3D shapes. Simultaneously, Charles
et al. [44] designed a novel type of neural network
directly applicable to point clouds. It is invariant
under rigid transformations of point positions in
the input, and showed strong performance. Xu et
al. [45] proposed a 3D shape representation learning
approach, a directionally convolutional network
(DCN), to extend convolution operations from images
to the surface meshes of 3D shapes. However, such
approaches still cannot provide an exact segmentation
for surface approximation purposes.

2.3 Semantic segmentation

Apart from the above-mentioned low-level segmentation
tasks, many techniques have been proposed recently
for high-level primitive segmentation for indoor or
outdoor scenes. For example, Kim et al. [12] exploited
the special structure of indoor environments to
accelerate 3D acquisition and recognition with a low-
end hand-held scanner. Nan et al. [46] also presented
an algorithm for recognition and reconstruction of
scanned 3D indoor scenes, reinforcing classification
by a template fitting step to provide a scene
reconstruction. Dai et al. [47] designed an easy-to-use
and scalable RGB-D capture system that achieved
good performance on several 3D scene understanding
tasks, including 3D object classification, semantic
voxel labeling, and CAD model retrieval. Nguyen
et al. [48] built a robust annotation tool that
effectively and conveniently enabled segmentation
and annotation of massive 3D data.

2.4 QOwur approach

There are many other mesh segmentation techniques
that are not directly related to our work. The
reader is referred to survey papers for more details
[21, 22]. Our approach falls into the category of low-
level primitive extraction by hierarchical clustering.
Instead of considering only fitting errors, we also
take shape priority and boundary regularity into
account, which lead to better segmentation results
than representative competing counterparts.
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3 Overview

Let M = {T,V} denote the input mesh surface,
where T = {t1,...,t,,} is the set of triangles, and
V = {v1,...,vp,} is the set of vertices. Each ¢; has
three vertices {v;;}3_;. Our goal is to partition
M into a set of non-overlapping components, or
clustering regions, denoted R = {R;}/; such that
each region R; can be approximated by a best-fitting
simple primitive {P;} (a plane, cylinder, sphere, or
cone). Hence R; consists of a set of connected
triangles {¢; 5 } 7., such that 7 = |J;'_; R;. We assign
a cluster id C; to each region R;, and also assign
this cluster id C; to every triangle ¢; (k= 1,...,n;)
inside this region.

Our segmentation algorithm is an improved version
of the well-known hierarchical face clustering (HFC)
approach [19]. There, at the beginning, each triangle
t; is considered to be a clustering region, with cluster
id set to the index of the triangle. A cost function is
defined for pairs of adjacent clusters, which measures
the error on fitting a single primitive to the two
clusters. All pairs of adjacent clusters are fed into a
priority queue, such that the pair with smallest fitting
error are at the head of the queue. On each iteration,
the pair at the head of the queue is removed, and
the two clusters in this pair are merged into a new
cluster. The cost values of all pairs of clusters affected

by the merging operation are updated in the queue.

The algorithm terminates when all clusters are well
represented, for example, stopping when the total
error increases as the number of clusters decreases,
or the error of some cluster exceeds a user-specified
threshold.

Figure 2 illustrates an example of the hierarchical
clustering process. Our cost function for merging
neighboring clusters also considers both primitive

priority and boundary smoothness in a unified
framework, as detailed in the next section.

4 Cost function

In this section, we present the details of the cost
function used for merging two adjacent clusters. The
following principles are key to the design of our cost
function: (i) try to find a simple primitive with the
highest priority that best fits the merged clusters, (ii)
take boundary smoothness into consideration before
and after merging, and (iii) consider fidelity to avoid
unnecessary merging. The cost function for merging
the ¢-th and j-th clusters is defined as follows:

clustering pri smth

The meaning of each term above is described next.

4.1 Fitting energy

We first consider use of a simple primitive P to
approximate the merged i-th and j-th clusters,
leading to a fitting energy defined as

E @) — minaP EP 9
pri In,Plna fit ( )

where the term E’ evaluates the approximation
of the merged clusters by primitive P, and the
parameter o takes the priority and fidelity of
primitive approximation into account. Note that
both terms are defined with respect to the i-th and
j-th cluster, but we omit ¢, j here for brevity. These
two terms are analysed further below.

4.1.1 Fitting by a fixed primitive
The approximation error of the merged clusters by a
fixed primitive P can be evaluated by

1 & .
Bgp = — 3 dist(p, P)? (3)
k=1

where {p}}", includes the vertices, barycenters of

(a) (®)

(©) (d) (e)

Fig. 2 Clustering process for the Joint model with 445 faces. (a) Grey-green: input mesh. Orange: pair of faces with smallest clustering cost.
(b) After reducing to 412 clusters. Planes are formed due to their higher priority. (c) At 166 clusters. All large planes have been extracted. (d)
At 65 clusters. Cylinders are detected. (e) At 12 clusters; the final result corresponding to the ground truth. Clusters are randomly coloured.
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triangles, and midpoints of all edges belonging to the i-th
and j-th clusters, and dist is the Euclidean distance
from data point pi to the fitted primitive P. Note
that since our primitives are all simple quadrics, the
distance function dist(-) has an explicit representation.
Readers are referred to Refs. [11, 19, 49] for more
details.

4.1.2  Priority and fidelity

Since the target primitive P can be a plane, cylinder,
sphere or cone, we adopt a parameter a” to control
the priority and fidelity of the choice, defined as

aP = agriaﬁﬁc (4)
Here, az))ri is based on the priority of the primitive

type, i.e., plane > cylinder > sphere > cone, and is
set to

0.8,

WP 0.9, if P isa cylinder (5)

pr 1.0, if P is a sphere or cone

oo,

if P is a plane

if P is an undesired case

The term ag, controls the fidelity of the merging,
and is defined as
if ozl(fr)i + a}(ojr)i < 2ap7;i and

|Area(i) — Area(j)| > 3Area(ilJj)/4

1, otherwise

oo,

P _
Qfide =

(6)
where ozsr)i is the priority value of the current primitive
approximating the i-th cluster. Equation (6) works
as follows. Suppose that the current i-th and j-
th clusters are approximated by different types of
primitives, e.g., a plane and a cylinder, and the area
of the i-th cluster is far bigger than that of the j-
th cluster. Then a” ensures we choose a plane to
approximate the merged area rather than a cylinder.

See Fig. 3(b) for an illustration.

o/

(a) Cone Fillet Surface

X

(b) Cylinder Fillet Surface

Fig. 3 Fillet surfaces (red). (a) Approximate conical fillet surfaces
between plane and cylinder clusters (white). The area of the planes and
cylinders is much larger than that of the fillet part. (b) Approximate
cylindrical fillet surfaces between plane clusters. The area of the planar
part is much larger than that of the fillet part. We avoid merging
such fillet surfaces clusters.

We show how EJ. and o work together in
Fig. 4. In Fig. 4(a), two clusters (red and blue)
are to be merged; the final choice of primitive to
approximate the merged area is a cylinder as shown in
Fig. 4(b). Figures 4(c)-4(f) show the approximation
result if instead a plane, cylinder, sphere, or cone is
used, respectively, without taking o” into account;
numerically a cone gives the smallest EL. However,
when taking o into account, since the cone has the
lowest priority, a cylinder gives the lowest a” ET;.
Note that in this example, since the red cluster and
the blue cluster in Fig. 4(a) have comparable areas,
the term agh, has little effect.

4.2 Boundary smoothness

Smooth segmentation boundaries are necessary in
CAD models. Existing work always processes
irregular boundaries in a post-processing step. Here
we take boundary smoothness into consideration
when deciding merging of i-th and j-th clusters. This
is done by evaluating

Eglin = Z 0" — Z 9l(i) — Z 0% + Rate(B/D)
k l n
(7)

where Qiuj is the clockwise angle between the k' and
k + 1** boundary edge in the merged region formed
by the ¢-th and j-th clusters, Gl(i) is the clockwise
angle between the I*" and I + 1** boundary edge of
the i-th cluster, and similarly for 05, Equation (7)
encourages merging of two clusters with rough

@ (b)

——— !
= 4

(d) (e)

Fig. 4 (a) Two clusters (red and blue) to be merged; (b) the cylinder
used as the final choice of primitive to approximate the merged area;
(c)—(f) show the resulting primitive if instead the type is fixed as a
plane, a cylinder, a sphere, and a cone.
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boundaries into a region with smoother boundaries.

Very rough boundaries with zigzags will yield a large

sum of the turning angles of the edges (see Fig. 5).

Rate(B/D) = (total boundary length)/(box diagonal
length) is a penalty, which reflects the complexity of
the clustering results relative to the original input
model.

The parameter [ is set to balance the magnitude

of the energy terms E‘Smﬂf1 and Ep’r]1

B = Epxi/(47) (®)

AVAVAVAV
N/ \/

(a) Before merging

/\ /

(b) After merging

Fig. 5 Sum of boundary turning angles. (a) Before merging, clusters ¢
(red) and j (blue). (b) After merging, cluster (7, ) (green). Successive
boundary edges make a turning angle, and a cluster with smooth
boundaries has a smaller sum of edge turning angles.

5 Experimental results

5.1 Background

The proposed algorithm was implemented using the
open-source platform Graphite ®. We have validated
our algorithm on a wide range of input meshes
including both tessellated CAD models and scanned
mechanical /organic shapes. All results shown in
this section were produced automatically without
user interaction. The results were produced on

a machine with an Intel Core i7-7700 CPU with

16 GB RAM and Windows 10 operating system.

In the following, we perform a detailed analysis
of our method, as well as comparing it to several
representative approaches, hierarchical face clustering
(HFC) [18], hierarchical mesh segmentation (HMS)
[19], variational mesh segmentation (VMS) [11], and

feature-aligned segmentation (FAS) [20].
5.2 Analysis & comparison

First, we compare our method with the competing
algorithms HMS [19], VMS [11], and FAS [20] in

@ http://alice.loria.fr/software/graphite
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Fig. 6. All are able to extract complex primitives
rather than planar structures. All the algorithms
were tested on different types of input: the Chess and
the Sword models are tessellated CAD models, the
Blade is a scanned mechanical model, and the Bone
model is scanned freeform shapes. The segmentation
results shown have the same number of clusters for
each model.

All competing algorithms work well generally
for models with simple quadric primitives such
as Chess. HMS and FAS cannot
segment the base of Chess successfully because two

However,

primitives are smoothly connected. Our algorithm
obtains the optimal result, as does VMS, but it is
more efficient since only hierarchical clustering is
performed. The Sword and Blade models have more
complicated structures, for which the other methods
either produce wrong clusters (HMS and VMS)
or cannot segment simple primitives with smooth
blending regions (FAS). Our approach outperforms
the others as we consider both approximation
error and regularity of the segmentation boundary
simultaneously.

When processing organic models, our algorithm

o8 $u 1
4

HMS VMS FAS Ours

M

66

Color Map

Fig. 6 Comparisons, left to right, to HMS [19], VMS [11], FAS [20],
ours, and a color map. Top to bottom: tessellated CAD models Chess
and Sword, scanned mechanical model Cup, and organic shape Bone.
Segmentation patches are randomly coloured.
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can detect better, more meaningful segmentation
boundaries than the other methods. For example, in
the simple Bone model, HMS, VMS, and our method
produce correct segmentations using five clusters,
while FAS gives unsatisfactory output. Our results
exhibit better boundary smoothness in such examples.
Our method achieves better output because we
jointly perform primitive detection and boundary
regularization, even though the segmented patches
are not regular primitives. Further results of our
approach are shown in Fig. 7.

Earlier algorithms either extract only simple
primitives (plane, sphere, and cylinder) [18, 19],
which is too limited, or fit general quadrics [11], which
introduces unwanted primitives (such as hyperboloids
of one or two sheets). In our approach, we include
the cone surface as a basic primitive, which is an
improvement over the HFC framework. Benefits of
providing conical surfaces can be seen in Fig. 8. HMS
cannot detect the cone at the top of the Screw and
outputs incorrect clusters at the connection between

Fig. 7 Further segmentation results produced by our algorithm.
Segmentation patches are randomly coloured.

Fig. 8 Comparisons to HMS and VMS methods, for cone fitting.
Left to right: input tessellated CAD model with sparse triangulation,
results of HMS, VMS, our method, and colormap.

the two primitives in red box. While VMS works
as well as our method, it sometimes becomes stuck
in local minima due to its random initialization, so
success of the algorithm cannot be guaranteed. In
such cases, user interaction is required to indicate
where to insert or delete new clusters.

5.3 Effectiveness of boundary smoothing

To demonstrate the effectiveness of our newly
introduced boundary regularization term, we carried
out additional comparisons with HFC [18] and HMS
[19] algorithms, which are also based on hierarchical
clustering. HFC only detects planar primitives and
forces each cluster to be as nearly circular as possible.
To make a fair comparison with HFC [18], we only
enabled planar primitive fitting and disabled the other
higher order primitives. We tested both HFC and
our method on the Venus model, which has a very
irregular low resolution triangulation.

As shown in Fig. 9, although HFC tends to avoid
sharp boundary changing in angle, the clusters (top
row) are poor-grouped and hard to be satisfactory. In

Fig. 9 Boundary regularization comparison to the HFC method
[18] using the Venus_Body model with 5672 faces. Top: HFC results,
bottom: our results, each method using its own boundary optimization.
Left to right: with 18, 13, and 8 clusters.
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contrast, the result of our algorithm (bottom row) is
more consistent with the distribution of the structure
of human body. We can also detect better meaningful
segmentation boundaries. At the same time, our
results exhibit better boundary smoothness.

Next, we compared to HMS by only enabling
plane, cylinder, and sphere primitives. Figure 10
shows several intermediate results of both methods
with the same number of clusters. We found that
during the whole iteration, our algorithm always
produces better results, avoiding incorrect clusters
and performing boundary regularization. In the
process of cylinder forming and merging, HMS
produces many irregular results while ours are much
better. We give a quantitative comparison in terms
of boundary smoothness in Table 1, by evaluating the
total length of boundary edges of the corresponding
segmentation.

5.4 Effectiveness of primitive priority
To demonstrate the effectiveness of our new priority
Table 1 Boundary statistics. |R|=number of clusters. B/D rate=

(total boundary length)/(box diagonal length), which reflects
complexity of clustering results relative to the input model

Model Methods B/D rate
IR| 18 13 8
Venus HFC 7.424 6.796 5.316
Ours 4.630 3.197 2.061
IR 50 28 17
Sample HMS 135.550 95.677 78.566
Ours 115.245 81.911 72.652
IR| 20 16 10
Rockerarm HMS 11.973 9.390 6.286
Ours 7.488 6.666 5.473

term, we first compare our approach to HMS [19]
using a simple CAD model, the Joint, as shown in
Fig. 11. Because of the priority parameter, the order
of the clustering changes significantly during iteration.
Our algorithm tends to extract larger clusters of
simple primitives as early as possible.

To explore the effectiveness of our method in terms
of fidelity, we tested both HMS and our method on
the Anchor model and the Fandisk model, as shown
in Fig. 12. For the Anchor, HMS cannot segment
the structure formed by a plane and cylinder, which
is a common transitional design in industrial CAD
models. When the final number of primitives to be
fitted is specified, it splits a well-grouped cylinder to
add a new cluster, rather than the grooved structure
forming by a pair of orthogonal planes. As for the
Fandisk model, the same situation occurs for a more
complicated structure comprising a plane smoothly
blended with two cylinders. Because these two models
are composed of exact simple quadric primitives,
our method can recover the original ground truth
structure exactly. To summarize, our method avoids
producing undesired clustering in transition regions,
and so provides more reasonable results.

5.5 Comparison with deep learning methods

Deep learning has been widely used in various
graphics and geometry processing applications. To
demonstrate the effectiveness and understandability

of our results, we compare our approach with work
on component segmentation (LMVCNN) [50] and
human body segmentation STC [51] using two simple
models, the Ant and the Bracket, which have clear
branching structures for semantic and patch-based
segmentation.

Fig. 10 Comparison to the HMS method [19]. Left: sample model with 50, 28, 17 clusters. Right: Rockerarm model with 20, 16, 10 clusters.
Top: HMS results without boundary regularization. Bottom: our results.
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Fig. 11 Comparison to HMS in terms of priority, using the Joint

model with 6060 faces. Left: Attene’s result without primitive priority.
Right: ours with primitive priority.

Fig. 12 Comparison to HMS in terms of primitive priority using the
Anchor (top) and the Fandisk (bottom) models. Left to right: ground
truth, HMS result, and our result. The ground truth was provided by
experts using manually segmentation.

As is shown in Fig. 13, deep learning relies heavily
on functional relationships within the model. These
methods are good at handling functional parts, such
as the body and aircraft wings in their paper, but
cannot recognize the many legs and antennae of the
Ant model. For standard CAD models, they also
fail to produce meaningful results. On the contrary,
our algorithm based on primitive surface fitting can
segment semantic structure well and obtains very
reasonable results. It also shows that our algorithm
can be applied to a wider range of models without
learning.

(a) LMVCNN (b) STC (c) Ours (d) Colormap

Fig. 13 Comparison to deep learning approaches using the Ant
model. Left to right: (a) STC, (b) LMVCNN, (c) our result, and (d)
color map.

5.6 Global regularization

Although our algorithm can ensure that each cluster
uses the closest quadric for fitting and parametric
form for storage, in practical industrial production,
global relationships between disconnected parts
are often considered to be an important issue,
such as multiple parts forming subcomponents,
and different parts aligned with each other via
symmetry (e.g., parallel or orthogonal axes). We
use the symmetry detection method in Ref. [52] to
identify all components with the same transformation
(translation, rotation), and then determine whether a
subcomponent is formed according to the connection
relationship. We also consider that objects with
geometric properties such as discrete cylindrical and
coaxial circular surfaces should have global symmetry.

As shown in Fig. 14, each part is obtained by fitting
a corresponding quadric primitive. However, the
result appears too fragmentary and cumbersome to
be used easily and conveniently. In Fig. 14(c), we
detect that the cylinder and plane on the edge exhibit
the same rotational transformation. By their spatial
relationships, we judge that two adjacent cylinders

(a) Input model

(b) General result (c) Global optimization

Fig. 14 Global optimization results for the Pinion model. Left to

right: (a) input model, (b) initial result, and (c) result with global
alignment.
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and a plane can form a tooth subcomponent and
in this model, all parts on the rim just repeat this
tooth subcomponent. The gap between any two teeth,
which we consider to be a discrete partition of a
complete cylinder, form a hollow cylinder together
with the internal entity. The regularized result is
more compact and concise, so is more convenient for
subsequent engineering processing and applications.

5.7 Performance

The running time required for all demonstrated
models is presented in Table 2. The time taken is
affected by both the size of the input model and
the number of the final clusters. Our algorithm
is slightly slower than Attene’s HMS [19] due to
the additional computation, but our results are
improved significantly. Compared to optimization-
based approaches [11, 20], our algorithm is much
faster. However, our implementation is not fully
optimized, and we hope to further improve the
performance in future work.

Table 2 Timings (s)

Model ny | |R] HMS  VMS FAS Ours
Blade 78k 35 71.35 100.54 122.12 87.61
Chess 24k 8 14.84 25.45 27.48 16.43
Cup 5.7k 5 2.51 5.82 6.64 3.46
Ant 11.7k 12 12.28 20.62 22.40 12.58
Dragknob 0.3k 6 <1 2.63 2.96 <1
Couplingdown 3.7k 36 7.76 11.81 13.55 8.98
Elk 10k 13 15.79 24.45 28.15 18.35
Bracket 37k | 38 22.19 4781 45.73 31.48
Dustpan 4v 70 1.57 9.14 9.82 2.75
Boat 4k 57 7.66 15.31 17.88 7.84
Screw 0.3k 9 <1 4.62 4.68 <1
Rockerarm 7k 20 9.24 21.04 29.87 5.92
Joint 6k 12 4.62 14.88 19.87 7.18
Fandisk 13k 22 11.19 21.88 23.95 16.99
Joint 0.5k 12 <1 1.94 2.37 <1
Sword 80k 8 | 100.37 190.17 192.75 132.47
Bone 30k 5 22.63 34.14 34.34 25.47
Spool 1.3k 13 <1 2.22 2.74 1.34
Rotor 1.2k 10 1.74 5.92 6.39 1.77
oblong 0.8k 24 <1 1.56 1.47 <1
Star 10k | 27 12.63 26.96 28.93 15.58
Rollingstage 100k 30 T2.77 124.82 139.47 90.76
M145 27k 60 16.12 28.82 26.66 16.55
Casting 37k 16 18.50 24.23 24.45 19.38
Sample 26.7k 17 16.12 24.99 28.15 22.04
Venus 5.7k 15 9.41 14.50 15.14 6.03
Anchor 1k 28 <1 1.56 1.78 <1
Moai 20k | 28 25.22 37.6 34.00 26.76
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5.8 Limitations

Although our method can produce acceptable results
for various inputs, it depends on the fact that the
detected primitives themselves must have certain
geometric properties. This means that a segmented
cluster, to some extent, should be approximated by
a simple quadric shape properly. Figure 15 shows
an unsatisfactory example, which exhibits no clear
structure. Therefore, our algorithm cannot work well
and produces unsatisfactory output. Other competing
algorithms cannot deal with such input either.

Fig. 15 An unsatisfactory example. Left to right: results of HMS
[19], VMS [11], FAS [20], our method, and colormap, for 28 clusters.

6 Conclusions & future work

We have proposed a simple primitive detection
algorithm, which is based on hierarchical clustering
[18, 19]. We improve the original algorithm in three
ways.
which improves the approximation flexibility of the
framework. Next, we introduce primitive priority to
encourage simpler primitives. Finally, we propose a
new boundary regularization term which improves

Firstly, we add cones as a new primitive,

the results significantly. Our algorithm works well on
a wide range of inputs. However, we cannot produce
satisfactory output for shapes without clear structure,
as shown in Fig. 15. This is a common drawback of
many mesh segmentation algorithms.

There are several promising ways in which this
work could be extended. Firstly, the current
algorithm performs only local processing with little
consideration of global relationships between non-
adjacent clusters. We plan to take more global
constraints (angular relationships, symmetry, and
so on) into account to further improve the regularity
of the detected primitives. Secondly, although we can
extract correct primitives for many CAD meshes, we
do not convert them into a solid model that can be
processed in modeling systems such as Solidworks.
Such conversion is very important for many reverse
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engineering applications. In the future, we hope to
put more effort into completing the whole pipeline
for reverse engineering,.
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